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Abstract

Rewriting logic is both a flexible semantic framework within which widely dif-
ferent concurrent systems can be naturally specified and a logical framework
in which widely different logics can be specified. Maude programs are exactly
rewrite theories. Maude has also a formal environment of verification tools.
Symbolic computation is a powerful technique for reasoning about the correct-
ness of concurrent systems and for increasing the power of formal tools. We
present several new symbolic features of Maude that enhance formal reasoning
about Maude programs and the effectiveness of formal tools. They include:
(i) very general unification modulo user-definable equational theories, and (ii)
symbolic reachability analysis of concurrent systems using narrowing. The pa-
per does not focus just on symbolic features: it also describes several other
new Maude features, including: (iii) Maude’s strategy language for controlling
rewriting, and (iv) external objects that allow flexible interaction of Maude
object-based concurrent systems with the external world. In particular, meta-
interpreters are external objects encapsulating Maude interpreters that can in-
teract with many other objects. To make the paper self-contained and give a
reasonably complete language overview, we also review the basic Maude features
for equational rewriting and rewriting with rules, Maude programming of con-
current object systems, and reflection. Furthermore, we include many examples
illustrating all the Maude notions and features described in the paper.
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1. Introduction

What is Maude? The Maude book’s title [28] describes it as a High-Performance
Logical Framework and adds: How to Specify, Program and Verify Systems in
Rewriting Logic. Maude is indeed a declarative programming language based
on rewriting logic [90, 19, 98].

So, what is rewriting logic? It is a logic ideally suited to specify and execute
computational systems in a simple and natural way. Since nowadays most com-
putational systems are concurrent, rewriting logic is particularly well suited to
specify concurrent systems without making any a priori commitments about the
model of concurrency in question, which can be synchronous or asynchronous,
and can vary widely in its shape and nature: from a Petri net [128] to a process
calculus [134, 126], from an object-based system [92] to asynchronous hardware
[75], from a mobile ad hoc network protocol [79] to a cloud-based storage sys-
tem [14], from a web browser [21, 122] to a programing language with threads
[107, 108], from a distributed control system [105, 11] to a model of mammalian
cell pathways [54, 130], and so on. And all without any encoding : what you see
and get is a direct definition of the system itself, not some crazy Turing ma-
chine or Petri net encoding of it. All this means that rewriting logic is a flexible
semantic framework to define and program computational systems. But since
in rewriting logic

Computation = Deduction

the exact same flexibility can be used to specify any logic in rewriting logic,
used now as a logical framework. Indeed, a logic’s inference system can be natu-
rally specified as a rewrite theory whose (possibly conditional) rewrite rules are
exactly the logic’s inference rules. Again, logics as different as linear logic, first-
order logic, various modal logics, or all the higher-order logics in Barendregt’s
lambda cube can be specified in rewriting logic (and mechanized in Maude)
without any encoding [83, 127, 112, 98]. This explains the “Logical Framework”
part in the Maude book’s title.

What about the “High-Performance” description? You should not take our
word for it. Instead, you may wish to take a look at the paper [62], where a
thorough benchmarking by H. Garavel and his collaborators at INRIA Rône-
Alpes of a wide range of functional and rule-based declarative languages based
on a large suite of benchmarks expressed in a language-independent manner
and mapped into each language is reported. Although Maude is an interpreted
language, it ranks second in overall performance for that suite, closely after
Haskell.

What are Maude Programs? Rewrite theories. A rewrite theory is a triple
R = (Σ, E,R), where (Σ, E) is an equational theory, with function symbols Σ
and equations1 E, specifying a concurrent sytem’s states as an algebraic data

1As we explain in Section 2, the equational theory may also contain membership axioms
specifying the typing of some expressions. For the moment think of E as containing both
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type, and R is a set of rewrite rules that specify the local concurrent transitions
that the concurrent system can perform. In Maude this is declared as a system
module with syntax mod (Σ, E,R) endm. The degenerate case when R = ∅
gives rise to Maude’s functional sublanguage of functional modules, which are
declared with syntax fmod (Σ, E) endfm and specify the algebraic data type
defined by E for the function symbols in Σ. Of course, this means that when
writing and verifying Maude programs we never leave the realm of mathematics.
This explains the qualification: “How to Specify, Program and Verify Systems
in Rewriting Logic” in Maude book’s title. Maude is not just a language: it has
a formal environment of verification tools, some internal to the language and
others built as language extensions (more on this in Sections 3, 7, and 9).

Why another paper on Maude? Maude is in her mid 20s. The first confer-
ence paper on Maude appeared in 1996 [29]. This was expanded into the 2002
journal paper [27], which to this date remains the most cited journal reference
for the language. Important new advances were reported in the 2007 Maude
book [28], which is the most highly cited reference on Maude to date. But a lot
has happened since 2007. From time to time we have reported on new advances
in a piecemeal way in a sequence of tool papers; but they are both quite brief
and scattered over numerous publications: no unified account of the present
state of Maude actually exists. That is why we decided to write this paper.

What is it like? On the one hand repetition of material already available
in previous publications should be avoided; but on the other hand this paper
should be a good entry point to learn about Maude as it is in 2019 without
assuming prior acquaintance with Maude. Therefore, we have tried to strike
a balance between: (i) making the paper self-contained and providing a rea-
sonably complete overview of the language; and (ii) making sure that all the
important new features now available in Maude are explained and illustrated.
The way this balance between generality and novelty is attempted is reflected in
the paper’s organization. The most basic introduction to the language is given
in Section 2 on functional modules and Section 3 on system modules. The first
important new feature is Maude’s strategy language, treated in Section 4. Sec-
tion 5 on object-based programming is a mixture of old and new: on the one hand
we introduce new readers to the basic ideas on how distributed object systems
are programmed declaratively in Maude. On the other hand we explain several
important new features on how Maude objects can now interact with various
external objects. Another mixture of old and new is provided by Section 8 on
reflection and meta-interpreters: reflection is a long-standing and crucial fea-
ture of both rewriting logic and Maude; but meta-interpreters are an entirely
new feature. A very important additional theme with a host of new language
features is reflected in the paper’s title, namely, Maude’s current support for
symbolic computation. This theme is developed along three sections: Section 6
discusses unification, variants, and equational narrowing features; Section 7 dis-

equations and memberships.
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cusses narrowing-based symbolic reachability analysis; and Section 9.1 discusses
symbolic reasoning tools and applications.

Strategies. Most concurrent systems are intrinsically non-deterministic, so
that different transitions may lead the system into widely different states. The
obvious consequence is that an expression t in a system module can be evaluated
by its rules R in many different ways. For example, the rewrite theory (Σ, E,R)
may describe the game of chess, or the inference system of a theorem prover.
But many chess moves may be stupid ones, and many inference steps may be
useless. In both cases we need a strategy to apply the rules R in a way that
achieves our intended goals. This is what Maude’s strategy language, explained
in Section 4, makes possible.

Specification and Deployment of Concurrent Object Systems. Al-
though, as already mentioned, Maude can naturally express a wide variety
of concurrent systems, many such systems are best expressed as collections
of concurrent objects which communicate with each other by message passing.
Section 5 explains how concurrent object systems can be programmed declar-
atively in Maude. But this leaves open two issues: (i) the object-based view,
by its very nature, should allow interactions with any kind of object, including
the user seen as an “object,” and (ii) the Maude interpreter runs on a single
machine, therefore the concurrent system defined by the program can be sim-
ulated and analyzed in a Maude interpreter; but how can it be deployed as a
distributed system? Both issues are addressed by means of several kinds of ex-
ternal objects with which standard Maude objects can interact. In particular,
using socket external objects, Maude programs can be deployed as distributed
systems running on several machines.

Reflection and Meta-Interpreters. Rewriting logic is a reflective logic. This
means that its meta-theory, including notions such as theory and term, can be
represented as data at the so-called object level of the logic in a universal the-
ory. It also means that such a universal theory, like in the case of universal
Turing machines, can simulate any other theory, including itself. This is ex-
tremely powerful for (meta-)programming purposes and is efficiently supported
by Maude’s META-LEVEL module. Section 8 explains reflection, and also illus-
trates how meta-programming can be used to easily build advanced new tools
such as an Eqlog [64] functional-logic programming interpreter. It also explains
a very powerful new reflective feature, namely, meta-interpreters, which open
the possibility of creating and interacting in a reflective manner with a hierarchy
of Maude interpreters as external objects.

Maude and Symbolic Computation. Because Maude is a programming lan-
guage and a logical framework in which many different logics and formal tools
can be mechanized and has itself a formal environment of verification tools,
support for symbolic reasoning is very important both for advanced formal rea-
soning about Maude programs and to use Maude as a formal meta-tool to build
many other tools in other logics. From 2007 to the present, a sustained effort
has been made to endow Maude with powerful symbolic reasoning capabilities.
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At the equational logic level, they focus around the topic of Section 6, namely,
unification modulo an equational theory, that is, solving systems of equations
modulo an equational theory. Maude’s unification features are extremely general
in three orthogonal dimensions, corresponding to three aspects of an equational
theory, which in Maude can have the form (Σ, E ∪ B), where Σ is an order-
sorted signature (more on this in Section 2), B are common equational axioms
such as associativity and/or commutativity and/or identity, and E are equa-
tions that are assumed convergent (more on this in Section 2) modulo B. The
first dimension of generality is Σ: since order-sorted signatures are strictly more
general than many-sorted ones, which are way more general than unsorted ones,
order-sorted unification algorithms are much more general than the usual un-
sorted ones. The second dimension is unification modulo axioms B, which in
Maude can be any combination of associativity and/or commutativity and/or
identity axioms. The third dimension of generality is support for order-sorted
unification modulo any theory E ∪B, where the axioms B are as explained and
the equations E are convergent modulo B. Some very hard problems had to be
solved to make E ∪ B-unification practical and to characterize the cases when
it terminates. They were solved in [60] thanks to the notion of variant, as also
explained in Section 6.

At the rewriting logic level, Section 7 explains how the just-described support
for unification modulo E∪B becomes a key symbolic lever to support narrowing-
based symbolic reachability analysis for a rewrite theory (system module) R =
(Σ, E∪B,R), where E∪B has the so-called finite variant property [34], ensuring
that E∪B-unification terminates. Such reachability analysis provides a powerful
form of symbolic model checking for R, where possibly infinite sets of states are
described by symbolic expressions. Using the new symbolic reasoning features
described in Sections 6–7, many symbolic reasoning tools can be developed
covering many applications. Section 9.1 focuses on those tools and applications
most directly related to Maude itself; but similar formal tools can likewise be
developed (and are developed) for many other logics [98].

Core Maude vs. Full Maude. Maude is also referred to as Core Maude.
This is done to distinguish it from Full Maude. But what is Full Maude? What
Maude is not yet but will be. Most new features presented in this paper —
from the strategy language to variants, from unification algorithms to symbolic
model checking, from object-oriented features to parameterized modules— first
cut their teeth as features prototyped in Full Maude. How does Full Maude
work? By reflection. That is, Full Maude is a reflective Maude program extend-
ing Maude itself with new language features [28]. As explained in [48], since
many Maude verification tools need to manipulate Maude modules reflectively
and should be well integrated with Maude itself, they can be built quite easily
as extensions of Full Maude. Full Maude is not directly discussed in this paper;
but, as Alfred Hitchcock in his movies, makes some interesting cameo appear-
ances. A nice one takes place in Sections 8.2, where we show how the Eqlog
[64] functional-logic language can be easily implemented using reflection and
Maude’s narrowing-based symbolic reachability and can be given an execution
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environment as an extension of Full Maude.

Differences with the Conference Paper [40]. This paper is a loose and
very large extension of the conference paper [40]. Usually one says what has
been added, but that would take too long. It is much shorter to say what has
been loosely imported from [40], namely, some of the material in the “symbolic”
Sections 6–7. But even that needs a few grains of salt. For example, since this
paper focuses on language features and what they are good for, we have omitted
the detailed description of Maude’s order-sorted unification algorithm modulo
associativity given in [40].

Examples and Maude Executables. The examples in the paper run on a
Maude alpha version that will become a Maude release in the near future. The
executables for that alpha version are available at http://maude.sip.ucm.es/
strategies/. The Maude code for all the examples in the paper can be found
at http://maude.lcc.uma.es/maude28.

2. Functional Modules

Maude is a declarative language based on rewriting logic; but rewriting logic
has membership equational logic [95, 16] as its functional sublogic. From the
computational point of view the key difference between rewriting logic and its
membership equational sublogic is that between: (i) the non-determinism of
rewrite theories, and (ii) the determinism of equational ones. That is, an equa-
tional program is a functional program in which a functional expression (called
a term) is evaluated using the equations in the program as left-to-right rewrite
rules, which are assumed confluent [35]. If such an evaluation terminates, it
returns a unique computed value (determinism), namely, its normal form after
simplifying it with the (oriented) equations. Instead, a rewrite theory usually
models a non-deterministic and often concurrent system, which may never ter-
minate and where the notion of a computed value may be meaningless.

In this section we present Maude functional modules, which are conditional
membership equational theories of the form (Σ,M∪E∪B) specifying functional
programs, where: (i) Σ is the signature specifying: the types, here called sorts,
the subtype, i.e., subsort, inclusions, and the function symbols and constants
used in the theory; (ii) E is a collection of (possibly conditional) equations which
are used as left-to-right rewrite rules to evaluate terms; (iii) B is a collection of
equational axioms, such as associativity and/or commutativity and/or identity
satisfied by some of the function symbols in Σ; such axioms are viewed as
structural axioms, so that rewriting with the equations E is performed modulo
the axioms B; and (iv) M is a collection of (possibly conditional) memberships,
which can lower the sort of a term if a membership’s condition is satisfied (more
on this below). In Maude, the functional module defined by (Σ,M ∪ E ∪B) is
declared within keywords fmod and endfm, and is also given a name, say, FOO,
so that its declaration has the form: fmod FOO is (Σ,M ∪ E ∪B) endfm.

Maude’s syntax for Σ, E, and M is self-explanatory: it is in essence the
ASCII version of the standard textbook notation (see below). Instead, the
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structural axioms B are declared together with the function symbols satisfying
such axioms. Furthermore, the syntax for the signature Σ, i.e., the names and
syntactic form of the sorts, constants, and function symbols for Σ, is completely
user-definable. For example, if Nat is the name we have chosen for the sort of
natural numbers, we may choose any syntax we wish to declare a natural number
addition function in Σ, and, furthermore, we may declare such a function as
enjoying some structural axioms B. Suppose that 0 and 1 have been declared
as constants with the declaration:

ops 0 1 : -> Nat [ctor] .

where the ctor declaration makes it clear that the constants 0 and 1 are data
constructors that will not be evaluated away to other values by some equations.
Then, we can choose any syntax we wish for the addition function. The less
imaginative choice is to adopt a prefix syntax, such as +(1,0), or plus(1,0).
But we may wish to use the more readable infix syntax, so as to be able to write
the term 1 + 0. Suppose we decide to give addition such an infix syntax and
to declare it as enjoying the associativity axiom (x + y) + z = x + (y + z), the
commutativity axiom x+ y = y + x, and the identity axiom x+ 0 = x = 0 + x.
Then, we can give this declaration in Maude as follows:

op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .

where the two underbar symbols indicate where the first and second argument of
the addition function must be placed before and after the + character. As before,
the ctor declaration makes it clear that in this representation the addition
symbol is a data constructor, which will not be evaluated away, except if one
of its arguments is 0, so that the identity axiom can be used. That is, in this
representation the natural numbers are: 0, 1, 1 + 1, . . . , 1+ n. . . +1, . . . . Instead,
had we chosen the prefix syntax, say, plus, we would have given the alternative
declaration:

op plus : Nat Nat -> Nat [ctor assoc comm id: 0] .

Order-sorted equational logic [66, 95] is a very useful sublogic of membership
equatiognal logic. An order-sorted equational theory is a membership equational
theory (Σ,M ∪E ∪B) such that M = ∅, i.e., it has the form (Σ, E ∪B), where
Σ = ((S,<), F ) consists of a partially ordered set (S,≤) of sorts, where ≤
denotes subsort inclusion, and where F is a set of function symbols and constants
typed with sorts in S. Function symbols in F can be subsort overloaded (also
called subtype polymorphic). For example, we may introduce a sort NzNat of
non-zero natural numbers as a subsort of Nat, declare instead 1 as a constant
of sort NzNat, and add the additional declaration:

op _+_ : NzNat NzNat -> NzNat [ctor assoc comm id: 0] .

The only requirement is that, as done above, all subsort polymorphic function
declarations must satisfy the same structural axioms.

Example 1. Consider the following order-sorted specification of terms in prefix
form, with an arbitrary number of constant and function symbols, as elements
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of a sort Term having two subsorts, Var of variables, and NvTerm of non-variable
terms. Assuming that we import Maude’s built-in modules NAT of natural num-
bers, with main sort Nat, and QID of quoted identifiers, with main sort Qid, both
modules in protecting mode (i.e., the sorts in NAT and QID are not modified, but
they are protected, in such an importation [28]) we can then define such a data
type of terms as follows:

fmod TERM is
protecting NAT + QID .

sort Variable .
op x{_} : Nat -> Variable [ctor] .

sorts Term NvTerm .
subsort Qid < NvTerm < Term .
subsort Variable < Term .
op _[_] : Qid NeTermList -> NvTerm [ctor prec 40] .

sort NeTermList .
subsort Term < NeTermList .
op _,_ : NeTermList NeTermList -> NeTermList [ctor assoc] .

endfm

where, since no equations have been declared (only the associativity structural
axiom for non-empty lists of terms), all operators are data constructors. For
example, assuming a countable set of variables, say, x1, x2, . . . , xn . . . and arbi-
trary names for constants and function symbols, the term f(g(x3, b, x1), k(x2)) is
here represented as the term: ’f[’g[x{3},’b,x{1}],’k[x{2}]] of least sort2

NvTerm. Instead, ’b has least sort Qid, and x{3} has least sort Variable. But
of course all these terms share the common supersort Term.

Note that any finite poset, and in particular the poset of sorts (S,≤), can be
viewed as the reflexive-transitive closure of a directed acyclic graph (DAG), and
that the set of nodes of such a DAG breaks into a set of connected components.
For example, in the signature Σ = ((S,≤), F ) of the TERM module there are three
connected components: (i) one involving the sort Bool, since the Booleans are
imported by NAT, (ii) another involving the sort Nat and its subsort NzNat,
and (iii) yet another involving the sorts Qid, Var, NvTerm, and Term. Maude
automatically adds a new so-called kind supersort at the top of each connected
component in the poset (S,≤) declared by the user, where kinds are indicated
with a bracket notation. For this example, Maude will add kinds [Bool], [Nat]
and [Term] at the top of each of these three components. Furthermore, for each
function symbol, say f : s1 . . . sn → s, in Σ a new subsort-overloaded symbol
f : [s1] . . . [sn]→ [s] is also added by Maude at the kind level. Intuitively, terms
whose least sort is a kind are viewed as error terms. For example, the least sort
of the term ‘f[‘a][‘g[‘c,x{2}],’b] is the kind [Term], because ‘f[‘a] is
not a quoted identifier and therefore cannot be used as a function symbol. This
is very useful to give functional expressions the benefit of the doubt, because at

2Under a simple syntactic condition on Σ checked by Maude, called preregularity [66]
(more generally, preregularity modulo the structural axioms B [28]), any Σ-term t always has
a smallest possible typing with a sort called its least sort and denoted ls(t).
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parse time only partial type information may be available, but as a computation
progresses some typing problems may go away. For example, in a data type RAT

of rational numbers an expression like 3 / (2 - 7) can only be parsed with
least sort [Rat], but will happily evaluate to - 3 / 5 with least sort NzRat.
Instead, the evaluation of the term 3 / (7 - (4 + 3)) will yield the error term
3 / 0, whose least sort is [Rat].

2.1. Predicate Subtyping with Membership Predicates

The full generality of Maude functional modules as membership equational
theories can be illustrated by means of the following module.

Example 2. We define in Figure 1 a functional module PFUN of (finite) partial
functions on the natural numbers.

fmod PFUN is
protecting NAT .

sorts Pair PFun Rel Nat? .
subsorts Pair < PFun < Rel .
subsort Nat < Nat? .

op undef : -> Nat? [ctor] .

vars N M K : Nat .
var R : Rel .
var F : PFun .

op [_,_] : Nat Nat -> Pair [ctor] .
op null : -> PFun [ctor] . *** empty relation
op _,_ : [Rel] [Rel] -> [Rel] [ctor assoc comm id: null] .

eq [N,M], [N,M] = [N,M] . *** idempotency

op def : Nat Rel -> Bool . *** is number defined in relation
eq def(N, null) = false .
eq def(N, ([M,K], R)) = if N == M then true else def(N, R) fi .

cmb ([N,M], F) : PFun if def(N, F) = false .

op _{_} : PFun Nat -> Nat? . *** partial function application
eq null{N} = undef .
eq ([N,K], F){M} = if N == M then K else F{M} fi .

endfm

Figure 1: PFUN module

A few things are worth mentioning about this example. First of all, an
if-then-else operator with “mix-fix” syntax if_then_else_fi and with the ob-
vious equational definition is added automatically by Maude to any module
importing the BOOL module, which is always imported by default unless the
user indicates otherwise [28]. Second, a built-in equality predicate _==_ is also
automatically added by Maude for each connected component. However, nei-
ther of these built-in operators are really needed: the user can easily define
his/her own if-then-else, as well as an equality predicate for natural numbers,
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or for many other data types (see [70]). These two built-in operators have been
used in the definitions of the def predicate and of partial function application.
Third, because of the idempotency equation, all terms of sort Rel in normal
form are finite sets of pairs, and therefore finite relations in the mathematical
sense.

The key new feature used here is the conditional membership (introduced
with keyword cmb) defining the sort PFun of finite partial functions. This sort
is defined by three cases. A partial function F is either: (i) the empty relation,
or (ii) a relation R that is a partial function and to which a new pair [N,K]

has been added, provided R is undefined for the input N. Case (i) is covered
by the unconditional membership and case (ii) is specified by the conditional
membership. Membership predicates are unary predicates in postfix notation
:s, where s ∈ S is a sort. Applied to a term t whose least sort belongs to the

connected component of s (and could even be its kind sort), the predicate states
that t has sort s. A single such membership predicate is called an unconditional
membership and is introduced with the keyword mb. In general, both equations
and memberships can be conditional, and have, respectively, the general form:

ceq t = t′ if u1 = v1 ∧ . . . ∧ un = vn ∧ w1 : s1 ∧ . . . ∧ wj :sj .

cmb t :s if u1 = v1 ∧ . . . ∧ un = vn ∧ w1 : s1 ∧ . . . ∧ wj :sj .

That is, both equations and memberships may appear in their conditions. Using
ASCII symbols, the conjunction symbol ∧ is rendered in Maude as: /\. Since
an equation t = t′ will be applied as a left-to-right rewrite rule t→ t′ to simplify
terms, sort information should increase as such simplification proceeds. This is
captured by the requirement that all equations t = t′ (conditional or not) in a
functional module should be sort-decreasing. That is, for any substitution θ we
should have ls(tθ) ≥ ls(t′θ), where tθ and t′θ denote the respective instantia-
tions of t and t′ by θ. In the most common cases, all the variables appearing
in such formulas also appear in the term t at the left of the equation t = t′ or
the membership t :s. Furthermore, the equations and memberships in a condi-
tion can appear in different orders. However, for greater expressiveness Maude
allows conditional equations and memberships whose conditions can have extra
variables that are incrementally instantiated by matching, provided they obey
the syntactic requirements explained in [24, 28]. We explain the incremental
evaluation of conditions by means of Example 8 in Section 3.

In any confluent and operationally terminating functional module (more on
this below), any term can be evaluated to its unique normal form having a
least possible sort by applying to it both the module’s equations as left-to-
right rewrite rules, and the memberships to lower its sort, where equations
and memberships are applied modulo the axioms B. For example, the idempo-
tency equation [N,M],[N,M] = [N,M] can be applied modulo the associativity-
commutativity axioms for _,_ to simplify the term [1,2],[3,7],[1,2] to the
term [1,2],[3,7], even though the two instances of [1,2] are not contiguous.
This evaluation to normal form is performed with the reduce command (which
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can be abbreviated to red). For example, in the above functional module in
Example 2 above we can perform the following evaluations:

reduce in PFUN : [1 ,2],[1,2] ,[3,7],[5 ,17],[3 ,7] .
result PFun: [1,2] ,[3,7],[5 ,17]

reduce in PFUN : [1 ,2],[3,7] ,[5,17] {3} .
result NzNat: 7

2.2. Initial Algebra Semantics

What is the mathematical meaning of a Maude functional module, say, fmod
FOO is (Σ,M ∪ E ∪ B) endfm? That is, what does such a module declaration
denote? The answer is simple: Maude has an initial algebra semantics for such
modules, so that what FOO denotes is the initial algebra [95] TΣ/M∪E∪B of the
theory (Σ,M ∪ E ∪B). There are two possible descriptions of TΣ/M∪E∪B , one
more abstract, and another very concrete. In the abstract description an ele-
ment [t] ∈ TΣ/M∪E∪B is the =E∪B-equivalence class of a ground Σ-term t (i.e.,
t has no variables), where =E∪B is the provable equality equivalence relation
in the theory (Σ,M ∪ E ∪ B) [95]. Under the already-mentioned executabil-
ity conditions of: (i) sort-decreasingness, (ii) operational termination, and (iii)
confluence3 modulo B —where properties (i)–(iii) are summarized saying that
(Σ,M ∪ E ∪ B) is convergent modulo B— the more concrete and informative
description is given by the isomorphic algebra CΣ/M∪E,B ∼= TΣ/M∪E∪B , called
the canonical term algebra of (Σ,M ∪E ∪B), whose elements [u] ∈ CΣ/M∪E,B
are =B-equivalence classes of ground terms u that are in normal form by the
equations E and the memberships M modulo B. CΣ/M∪E,B provides the most
concrete possible semantics for FOO, since it is just the semantics of Maude’s
reduce command in the following sense: a ground term t that is evaluated to
a term u by Maude’s reduce command has as its value the B-equivalence class
[u] ∈ CΣ/M∪E,B . Furthermore, thanks to the Church-Rosser Theorem for mem-
bership equational logic [16], what the isomorphism CΣ/M∪E,B ∼= TΣ/M∪E∪B
ensures is the full agreement between the mathematical semantics provided by
TΣ/M∪E∪B and the rewriting-based operational semantics (for details see [16],
and for the conditional order-sorted subcase modulo B see [82]), whose algebra
of normal forms is precisely CΣ/M∪E,B .

2.3. Theories, Views and Parameterized Functional Modules

Maude, like its OBJ3 predecessor [67], supports a very expressive form of
parametric polymorphism [129] by means of its parameterized modules. The ex-
tra expressiveness has to do with the fact that parameters are not just paramet-
ric types, but are instead specified by parameter theories. That is, not only types

3Under the operational termination assumption, confluence modulo B just means that,
up to B-equality, the normal form of any term t by simplification with the equations E and
memberships M modulo B is unique. Therefore, confluence means that evaluation to normal
form is a deterministic computation.
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(sorts) can be parametric: constants and function symbols can also be paramet-
ric, and, furthermore, parameter theories impose semantic requirements, in the
form of logical axioms, that must be satisfied by any instantiation of a parameter
theory with actual parameters to be correct. Roughly speaking,4 a parameter
theory called, say, FOO, is a membership equational theory (Σ,M∪E∪B), which
is declared in Maude with syntax: fth FOO is (Σ,M ∪ E ∪B) endfth.

What is the mathematical semantics of such a functional theory FOO? Un-
like the case of a functional module, whose semantics is the initial algebra
TΣ/M∪E∪B , the semantics of a functional theory is the class of all (Σ,M∪E∪B)-
algebras, denoted Alg(Σ,M∪E∪B). That is, functional theories have a “loose
semantics” that specifies all the possible instantiations of the parameter theory
(Σ,M ∪ E ∪B) by an algebra A ∈ Alg(Σ,M∪E∪B) as an actual parameter.

Let us illustrate the extra power of parameterized theories, as opposed to
just parameterized sorts, by describing some examples at a high level (further
details can be found in [28]). The case of having just a parameterized sort is
handled by the trivial parameter theory TRIV:

fth TRIV is
sort Elt .

endfth

Note that the class of algebras of this theory, AlgTRIV = Set, is precisely the
class Set of all sets. Therefore, TRIV is exactly the theory of a parametric
type in the standard sense. For example, the parameterized functional mod-
ule of lists LIST{X :: TRIV} can be instantiated by any set, say A, as actual
parameter to obtain the data type of lists with elements in A. Let us con-
sider two other examples where the parameter theories are nontrivial. The
functional module SORTING{X :: TOSET} provides a parameterized functional
module to sort lists of elements for any totally ordered set (A,≤), that is, for any
(A,≤) ∈ AlgTOSET, where TOSET is the functional theory of totally ordered sets.5

Yet a third example is the functional module POLY{R :: RING, X :: TRIV} of
polynomials, which has two parameter theories. The first if the theory RING

of commutative rings, so that its actual parameters are commutative rings
(R,−,+, ∗, 0, 1) ∈ AlgRING providing the ring of coefficients used in the polyno-
mials. Instead, the actual parameters for the second theory TRIV are precisely
sets X ∈ Set providing the set of variables used in the polynomial expressions.
Of course, for parameter instantiations to be correct, all the axioms in theories
such as TOSET or RING must be satisfied by their actual parameters, (A,≤) or
(R,−,+, ∗, 0, 1). Maude does not check the semantic correctness of instantia-

4In fact, parameter theories may also contain initiality constraints in the sense of, e.g.,
[63, 45], which can impose the requirement that some sorts and functions must be interpreted
as the initial model of an imported subtheory. For example, a theory T may import the theory
NAT of natural numbers in protecting mode, so that only models where NAT is interpreted as
the natural numbers are accepted.

5The fact that, as explained in Footnote 4, a functional theory can include initiality con-
straints is useful in this case, since TOSET can be easily defined by importing the functional
module BOOL in protecting mode (see [28]).
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tions. However, tools like the Maude’s Inductive Theorem Prover (ITP) [32]
can be used for this purpose.

But how are parameter theories instantiated in Maude? By theory inter-
pretations! Suppose that we want to instantiate the parameterized module
POLY{R :: RING, X :: TRIV} to polynomials with rational coefficients and
with quoted identifiers as variables. We can, for example, use Maude’s mod-
ules RAT of rational numbers and QID of quoted identifiers in Maude’s stan-
dard prelude as actual parameters. But any functional module is a theory,
namely, a membership equational theory with the initiality constraint that a
model belongs to its class of models iff it is an initial algebra for the theory.
This means that not only the axioms explicitly mentioned in the functional
module, but also all its inductive consequences are true in such models and
therefore valid under the initiality constraint. So we just need two theory in-
terpretations: ring2RAT : RING→ RAT to get the actual ring of coefficients, and
Qid : TRIV → QID to select the sort Qid in module QID as the set of variables.
What is a theory interpretation? Given two membership equational theories,
say (Σ,M ∪E∪B) and (Σ′,M ′∪E′∪B′), a theory interpretation (called a view
in Maude) V : (Σ,M∪E∪B)→ (Σ′,M ′∪E′∪B′) is a signature map V : Σ→ Σ′

that preserves all the axioms M ∪E∪B, in the sense that the translated axioms
V (M)∪ V (E)∪ V (B) are logical consequences of the theory (Σ′,M ′ ∪E′ ∪B′).
What is a signature map V : Σ → Σ′? It is a mapping of sorts and function
symbols such that: (i) If (S,≤) and (S′,≤′) are the posets of sorts for Σ and
Σ′, then V is a monotonic function on sorts, and (ii) each constant a in Σ of
sort s in S is mapped to a ground Σ′-term V (a) with ls(V (a)) ≤ V (s), and
each function symbol f : s1 . . . sn → s in Σ is mapped to a Σ′-term V (f) = t′

with ls(t′) ≤ V (s′) and with variables among the x1 : V (s1), . . . , xn : V (sn) in
such a way that V preserves subtype polymorphism. In Maude such theory
interpretations are defined with syntax of the form (see [28] for more details):

view V from T to T’ is
sort S1 to S’1 .
...
op f(X1:S1 ,...,Xn:Sn) to term t’(X1:V(S1) ,...,Xn:V(Sn)) .
...

endv

A parameterized functional module M{X1 :: T1,..., Xm :: Tm} can be
instantiated by replacing its formal parameter theories T1, . . . , Tm by corre-
sponding views V1, . . . , Vm from T1, . . . , Tm to T’1, . . . , T’m, where the T’1, . . . ,
T’m need not be all different. In this way, we get the instance M{V1, ... ,Vm}.
For example, polynomials with rational coefficients and quoted identifiers as
variables are defined as follows:

fmod RAT -POLY is protecting POLY{Ring2RAT ,Qid} . endfm

We say that a parameterized module M{X1 :: T1, ... , Xm :: Tm} is fully
instantiated by the views V1, . . . , Vm if their target theories T’1, . . . , T’m are all
(unparameterized) functional modules. But this is not the only possibility: a
module may be instantiated in an incremental way. For example, we can define
a view:
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view triv2TOSET from TRIV to TOSET is
sort Elt to Elt .

endv

to instantiate the list module LIST{X :: TRIV} to the module LIST{triv2TOSET}
which is still parameterized, but now by the TOSET theory; and we can then use
LIST{triv2TOSET} as part of the definition of a SORTING{X :: TOSET} module.

Let us see an example illustrating all the ideas discussed so far.

Example 3. A parameterized module for finite partial functions generalizing
the PFUN module of Example 2 can be found in Figure 2. This module is such a
straightforward generalization of the PFUN module of Example 2 that not much
needs to be said about it, except, perhaps, for some syntax details. First of all,
note that PFUN{X :: TRIV, Y :: TRIV} has two parameters, both with param-
eter theory TRIV, but of course these two occurrences of TRIV are different and
can be instantiated quite differently. This means that two different copies of
TRIV must be used to avoid a confusion of sorts. In the first copy, the sort Elt
in TRIV is automatically renamed to X$Elt, and in the second copy to Y$Elt.
Furthermore, the sorts Pair{X,Y}, PFun{X,Y} and Rel{X,Y} are now para-
metric on both X and Y. Finally, the role formerly played by the supersort Nat <

Nat?, where the undef constant was added in FUN, is now played by the supersort
Y$Elt < ?{Y}, which is of course parametric on Y.

fmod PFUN{X :: TRIV , Y :: TRIV} is
sorts Pair{X,Y} PFun{X,Y} Rel{X,Y} ?{Y} .
subsorts Pair{X,Y} < PFun{X,Y} < Rel{X,Y} .
subsort Y$Elt < ?{Y} .

op undef : -> ?{Y} [ctor] .

vars X1 X2 : X$Elt .
vars Y1 Y2 : Y$Elt .
var R : Rel{X,Y} .
var F : PFun{X,Y} .

op [_,_] : X$Elt Y$Elt -> Pair{X,Y} [ctor] .
op null : -> PFun{X,Y} [ctor] . *** empty relation
op _,_ : [Rel{X,Y}] [Rel{X,Y}] -> [Rel{X,Y}] [ctor assoc comm id: null] .

eq [X1,Y1],[X1 ,Y1] = [X1,Y1] . *** idempotency

op def : X$Elt Rel{X,Y} -> Bool . *** is element defined in relation

eq def(X1 ,null) = false .
eq def(X1 ,([X2 ,Y1],R)) = if X1 == X2 then true else def(X1,R) fi .

cmb ([X1,Y1],F) : PFun{X,Y} if def(X1,F) = false .

op _{_} : PFun{X,Y} X$Elt -> ?{Y} . *** partial function application

eq null{X1} = undef .
eq ([X1,Y1],F){X2} = if X1 == X2 then Y1 else F{X2} fi .

endfm

Figure 2: PFUN module
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Since a view from TRIV into any theory T is fully determined by the name
Foo of the sort in T to which the sort Elt is mapped, Maude has a collection
of such views already predefined in its standard prelude. Therefore, to define a
module of partial functions from the natural numbers to the rationals we can
just write:

fmod Nat2RaT -PFUN is
protecting PFUN{Nat ,Rat} .

endfm

and we can then evaluate some expressions in this module as follows:

reduce in Nat2RaT -PFUN : [1 ,1/2] ,[1 ,1/2] ,[3 ,1/7] ,[5 ,1/17] ,[3 ,1/7] .
result PFun{Nat ,Rat}: [1 ,1/2] ,[3 ,1/7] ,[5 ,1/17]

reduce in Nat2RaT -PFUN : [1 ,1/2] ,[3 ,1/7] ,[5 ,1/17] {3} .
result PosRat: 1/7

Further Reading. Besides [28], further details on the executability conditions
for a (possibly conditional) functional module can be found in: (i) for operational
termination [43]; for confluence and sort-decreasingness [16, 47]; for rewriting
modulo axioms B, the canonical term algebra CΣ/M∪E,B , and the agreement
between mathematical and operational semantics [82, 99]. For the semantics of
parameterized functional modules see [63, 45, 97].

3. System Modules

Maude system modules model concurrent systems as conditional rewrite the-
ories [90, 19] of the form R = (Σ,M∪E∪B,R, φ), where: (i) (Σ,M∪E∪B) is a
membership equational theory satisfying the executability conditions of a func-
tional module (i.e., convergence), (ii) R is a set of (possibly conditional) rewrite
rules specifying the system’s concurrent transitions, and (iii) φ is a frozenness
map (more on this below). In Maude, a system module for the above theory
named FOO is declared with syntax: mod FOO is (Σ,M ∪ E ∪B,R, φ) endm.

What is the concurrent system defined by R? The membership equational
theory (Σ,M ∪E ∪B) defines the states of such a system as the elements of the
algebraic data type CΣ/M∪E,B . We can call this aspect the static part of the
specification R. Instead, its dynamics, i.e., how states evolve, is described by
the rewrite rules R, which specify the possible local concurrent transitions of the
system thus specified. The system’s concurrency is naturally modeled by the fact
that in a given state [u] ∈ CΣ/M∪E,B several rewrite rules in R may be applied
concurrently to different subterms of u, producing several concurrent local state
changes, and that rewriting logic itself models those concurrent transitions as
logical deductions (see [90, 19] and the later discussion on semantics). The only
restrictions imposed when applying rules in R are specified by the frozenness
map φ : Σ −→ P(N), which assigns to each operator f : k1 . . . kn → k in Σ
the subset φ(f) ⊆ {1, . . . , n} of its frozen arguments, that is, those argument
positions under which rewriting with rules in R is forbidden.

The rules in R can be unconditional rewrite rules of the form t→ t′, where
t, t′ are Σ-terms of the same kind. They are then specified in Maude with syntax
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rl t => t′ . but, by making them conditional, rules can become considerably
more expressive. Conditional rules in R have the general form:

crl t→ t′ if u1 = v1∧. . .∧un = vn∧w1 : s1∧. . .∧wm : sm∧l1 → r1∧. . .∧lk → rk .

where in Maude the → symbol is rendered in ASCII as => and the conjunction
∧ as /\ and where t and t′ are Σ-terms of the same kind, ui = vi, 1 ≤ i ≤ n
are Σ-equations, wi : si, 1 ≤ i ≤ m are memberships, and li → ri, 1 ≤ i ≤ k are
rewrite conditions understood as reachability predicates, that is, the arrow in
them (rendered in ASCII as =>) should be implicitly understood in a reflexive-
transitive closure sense as li →∗ ri. Of course, in their full generality, so that,
for example, new variables may appear in a rule’s condition in an arbitrary
manner, a conditional rule may not be executable in Maude. However, Maude
allows conditional rules to have extra variables in their conditions provided
they appear in a disciplined manner (spelled out in detail in [28]) that allows
such extra variables to be incrementally instantiated by incrementally evaluating
the conditions in the rule from left to right. We postpone a more detailed
explanation of conditional rule evaluation until after Example 8.

Besides the syntactic requirements for a conditional rule in R having extra
variables in its condition to be executable in Maude spelled out in [28], some
further executability requirements are needed: (i) first of all, the equational part
(Σ,M ∪E ∪B) must meet the requirements of a functional module, so the (ori-
ented) equations E should be sort-decreasing, confluent and operationally ter-
minating modulo B; and (ii) the rules R should “commute” with the equations
E modulo B in the precise sense of having the ground coherence property. This
exactly means that if t is a ground term having a normal form [u] ∈ CΣ/M∪E,B ,
and we can perform a rewrite t→ t′ with a rule in R, then we can also perform
a rewrite u → t′′ with a rule in R so that t′ and t′′ have the same normal
form, say, [w] ∈ CΣ/M∪E,B . Ground coherence can be checked by Maude’s ChC
tool [47]. This allows Maude to always normalize terms with the equations E
modulo B before performing a transition with R, under the assurance that no
state transitions will ever be missed by following this strategy.

Let us explain how terms are evaluated in a system module. As pointed
out at the beginning of Section 2, the key difference between an equational
program (functional module) and a rewriting logic one (system module) is that
evaluation to normal form of a term t in a functional module by means of the
reduce command yields a unique result (determinism) under the confluence and
operational termination assumptions. Instead, rewrite theories are intrinsically
non-deterministic. What should Maude do to evaluate a term t in a system
module? t can be rewritten in many different ways to many different terms, and
the process may never terminate. Maude offers the following options:

• A rule fair sequence of rewrite steps starting from a term t can be obtained
by giving the command: rewrite t . but since such a rewrite sequence
may not terminate, a bound limiting the number of rewrite steps can be
specified (see [28]). Rule fairness means that if more than one rule is
applicable to the terms of a rewrite sequence, different rules are applied,
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avoiding the repetition of the very same rule for each term in a rewrite
sequence.

• A rule and position fair sequence of rewrite steps starting from a term
t can be obtained by giving the command: frewrite t . and a bound
limiting the number of rewrite steps can likewise be specified (see [28]).
Position fairness is similar to rule fairness but refers to the positions of a
term where a rule is applicable.

• The entire, possibly infinite, state space of terms reachable from a term
t by a sequence of rewrite steps can be explored with Maude’s search

command, which searches such a state space in a breadth-first manner.
The general form of the command is: search t =>� t′ s.t. C . where t′

is a term pattern, so that we are looking for terms reachable from t that
are instances of t′ by a substitution θ, and C is an equational condition
such that only reachable terms of the form t′θ such that Cθ holds are
selected. The � symbol is a place holder for the options: � = 1 (exactly one
rewrite step), � = + (one or more steps), � = * (zero or more steps), and
� = ! (terminating states). Since the search may either never terminate
and/or find an infinite number of solutions, two bounds can be added to a
search command: one bounding the number of solutions requested, and
another bounding the depth of the rewrite steps from the initial term t
(see the examples in Example 9 and [28] for details). Note that Maude’s
search command provides a quite expressive form of model checking by
reachability analysis, in addition to its LTL-based model checking.

Example 4. Let us consider a simple example of a system module. The HANOI

module in Figure 3 specifies the Towers of Hanoi puzzle, invented by the French
mathematician Éduard Lucas in 1883. His story tells that in an Asian temple
there are three diamond posts; the first is surrounded by sixty-four golden disks
of increasing size from the bottom to the top. The monks are committed to move
them from one post to another respecting two rules: only a disk can be moved at
a time, and they can only be laid either on a bigger disk or on the floor. Their
objective is to move all of them to the third post, and then the world will end.

In the HANOI module, the golden disks are modeled as natural numbers de-
scribing their size, and the posts are described as lists of disks in bottom-up
order. In general, we have terms describing the states of the game and rules
that model the moves allowed by the game. Rewriting with these rules allows
going from a given initial state to other states, hopefully including the desired
final state. In [28, Chapter 7] there is a collection of game examples that follow
this general pattern.

If we try to rewrite the initial puzzle setting

Maude > rewrite in HANOI : (0)[3 2 1] (1)[nil] (2)[nil] .

the command does not terminate because the disks are being moved in a loop.
We can instead rewrite with a bound on the number of rewrites, like 23 in the
following command example
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mod HANOI is
protecting NAT -LIST .
sorts Tower Hanoi .
subsort Tower < Hanoi .
op (_)[_] : Nat NatList -> Tower [ctor] .
op empty : -> Hanoi [ctor] .
op __ : Hanoi Hanoi -> Hanoi [ctor assoc comm id: empty] .
vars S T D1 D2 : Nat . vars L1 L2 : NatList .

crl [move] : (S) [L1 D1] (T) [L2 D2]
=> (S) [L1] (T) [L2 D2 D1]
if D2 > D1 .

rl [move] : (S) [L1 D1] (T) [nil]
=> (S) [L1] (T) [D1] .

endm

Figure 3: HANOI module

Maude > rewrite [23] in HANOI : (0)[3 2 1] (1)[nil] (2)[nil] .
result Hanoi: (0)[3 2] (1)[1] (2)[nil]

Even if the example has non-terminating rewrite sequences, as shown above with
the rewrite command, the number of reachable configurations is finite and the
following search command terminates.

Maude > search in HANOI : (0)[3 2 1] (1)[nil] (2)[nil] =>* H .
.... 27 solutions

Indeed, the solution to the initial configuration (0)[3 2 1] (1)[nil] (2)[nil]

is (0)[nil] (1)[nil] (2)[3 2 1] and is found at state 26.

In Section 4 we will consider again this example with the help of strategies.

3.1. Logic Programming Running Example

One of the key strengths of rewriting logic, inherited by Maude, is that a wide
range of concurrent and non-deterministic systems can be naturally specified as
rewrite theories and executed and analyzed as system modules in Maude. Such
systems include: (i) a very wide range of concurrency models [94, 98], (ii) the
executable semantic definition of concurrent programming languages [107, 123,
108], and (iii) a very wide range of logics, specified as rewrite theories using
rewriting logic as a logical framework [83, 98]. Section 5 will give examples of
how concurrent object systems can be naturally specified in Maude. Here we
give an example that straddles cases (ii)–(iii) above, namely, a computational
logic (Horn Logic [73]) that can at the same time be used as a programming
language. Since this logic programming example uses symbolic computation in
an essential manner, we will present several variants of it at various places in
the paper to illustrate various Maude symbolic computation features.

Example 5 (LP-Syntax). To define the semantics of logic programs as a sys-
tem module we first specify an LP-SYNTAX functional module that imports the
TERM functional module with sort Term in Example 1. An atomic predicate is
defined as a Qid symbol applied to a non-empty list of terms in parentheses:
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sort Predicate .
op _‘(_‘) : Qid NeTermList -> Predicate [ctor] .

Since for Horn clauses we need both empty and non-empty lists of predicates,
we define them in Maude as follows:

pr (LIST * (sort List{X} to PredicateList ,
sort NeList{X} to NePredicateList ,
op __ to _‘,_ [prec 50])) {Predicate} .

We define a Horn clause using the standard symbol :- for ⇐. We express an
axiom, e.g. ’father(’john,’peter), as a Horn clause with an empty body,
e.g. ’father(’john,’peter) :- nil.

sort Clause .
op _:-_ : Predicate PredicateList -> Clause [ctor prec 60] .

First, we should provide some basic notion of substitution.

Example 6 (LP-Substitution Module). Using the syntax for predicates and
Horn clauses given in Example 5, we define a substitution as a partial function
according to Example 3. We need to define two views from the sort Variable

to Elt and from the sort Term to Elt.

view Variable from TRIV to TERM is
sort Elt to Variable .

endv

view Term from TRIV to TERM is
sort Elt to Term .

endv

And we import the parametric module PFUN instantiated to the views Variable

and Term but rename sort PFun{Variable,Term} into Substitution, operator
_,_ for combining bindings into _;_, and operator [_,_] into the more standard
syntax _->_ for substitution bindings.

fmod LP-SUBSTITUTION is
protecting (PFUN * (op _,_ to _;_,

op [_,_] to _->_)) {Variable ,Term}
* (sort PFun{Variable ,Term} to Substitution ,

sort Pair{Variable ,Term} to Binding) .
endfm

Now, we are able to provide some basic syntactic unification functionality.

Example 7 (LP-Unification Module). Continuing Example 6, module
LP-UNIFICATION in Figure 4 defines a syntactic unification procedure, without
the occurs check, for both predicates and terms that will be used by our Horn
logic interpreter in Example 8 below. Note that the failure to unify is represented
by an expression at the kind [Substitution].

Example 8 (LP System Module). Using the LP syntax defined in Exam-
ple 5 and the unification algorithm in Example 7, the system module
LP-SEMANTICS in Figure 5 defines the semantics of logic programs and providing
an interpreter with a breadth-first strategy. We first define logic programming
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fmod LP-UNIFICATION is
protecting LP -SYNTAX .
protecting LP -SUBSTITUTION .

op unify : Predicate Predicate Substitution -> [Substitution] .
eq unify(F(NeTL1), F(NeTL2), S)
= unify(NeTL1 , NeTL2 ,S) .

vars C F : Qid .
var V : Variable .
vars NeTL1 NeTL2 : NeTermList .
var NVT : NvTerm .
var S : Substitution .
vars T T1 T2 : Term .

op unify : NeTermList NeTermList Substitution -> [Substitution] .
eq unify(C, C, S) = S .
eq unify(V, T1, (V -> T2) ; S) = unify(T1, T2, (V -> T2) ; S) .

ceq unify(T1, V, (V -> T2) ; S) = unify(T1, T2 , (V -> T2) ; S) if not T1 ::
Variable .

ceq unify(V, T, S) = (V -> T) ; S if not def(V, S) .
ceq unify(NVT , V, S) = (V -> NVT) ; S if not def(V, S) .
eq unify(F[NeTL1], F[NeTL2], S) = unify(NeTL1 , NeTL2 , S) .

ceq unify((T1 ,NeTL1), (T2 , NeTL2), S)
= unify(NeTL1 , NeTL2 , unify(T1, T2 , S))
if unify(T1, T2, S) :: Substitution .

endfm

Figure 4: LP-UNIFICATION module

configurations to hold the execution state, essentially composed of a predicate list
and a substitution PL $ S that represents the pending objectives and the bindings
carried from already executed clauses. The execution of a query predicate w.r.t.
a logic program will be defined as transition rules transforming a configuration.
Notice that the final configuration is extended with a natural number used for
renaming clauses before unification, and the logic program. Its semantics is
defined by a single conditional rule that invokes a variable renaming function
rename not shown here. Finally, we add an initialization function to evaluate a
predicate list PL in Pr.

Since the condition in the above conditional rule only involves equations,
its incremental evaluation is exactly the same as if it were the condition of a
conditional equation or membership in a functional module. Therefore, we can
use this example to explain the incremental evaluation of conditions in all cases.
After this explanation we will briefly summarize the more general case of a con-
ditional rule that also has rewrite conditions. To syntactically indicate the fact
that extra variables appear in a condition, the equality sign := is used instead of
the usual sign =. At the left of the := sign a pattern with new variables is placed.
Here three such patterns are given, one for each condition, namely, the term P3

:- PL3 and the variables S2 and N2. Operationally, the substitution instantiat-
ing the new variables in these three patterns is obtained by incrementally (one
condition at a time, from left to right): (i) reducing to normal form with the
module’s equations and memberships the substitution instance of the condition’s
righthand side. But instance under which substitution? For the first condition
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mod LP-SEMANTICS is
protecting LP -UNIFICATION .
sort Configuration .
op <_|_$_|_> : Nat PredicateList Substitution Program -> Configuration .

crl [clause] :
< N1 | P1, PL1 $ S1 | Pr1 ; P2 :- PL2 ; Pr2 >
=> < N2 | PL3 , PL1 $ S2 | Pr1 ; P2 :- PL2 ; Pr2 >
if P3 :- PL3 := rename(P2 :- PL2 , N1)
/\ S2 := unify(P1, P3, S1)
/\ N2 := max(N1, last$(P3 :- PL3)) .

...

op <_|_> : PredicateList Program -> Configuration .
eq < PL | Pr > = < last$(PL) | PL $ null | Pr > .

endm

Figure 5: LP-SEMANTICS module

—here the condition P3 :- PL3 := rename(P2 :- PL2,N1)— its righthand
side variables —here P2, PL2 and N1— must always appear in the conditional
rule’s lefthand side. Therefore, the righthand side rename(P2 :- PL2,N1) is
instantiated by the matching substitution θ0 with wich we have instantiated the
rule’s lefthand side to attempt a rewrite. Suppose, for example, that in θ0 P2 was
instantiated to ‘p(x{1}), PL2 to nil, and N1 to 5. Then we reduce to normal
form with the module’s equations the instance by θ0 of the condition’s righthand
side rename(P2 :- PL2,N1), that is, the term rename(‘p(x{1}) :- nil,5).
Since the rename function just renames the variables to fresh ones above the
given index, we will get the result ‘p(x{6}) :- nil. Then, (ii) we now incre-
mentally extend θ0 by instantiating the new variables in the condition’s lefthand
side P3 :- PL3 by matching ‘p(x{6}) :- nil against it. That is, P3 is instan-
tiated to ‘p(x{6}) and PL3 is instantiated to nil, thus getting an extended
substitution θ0 ] θ1. But this extended substitution can now instantiate all the
variables in the righthand side of the second condition S2 := unify(P1,P3,S1),
so that we can again reduce the instance by θ0 ] θ1 of its righthand side to nor-
mal form and then instantiate S2 to that normal form to obtain a new extended
substitution θ0 ] θ1 ] θ2. We then proceed in the same manner to evaluate the
third condition using θ0 ] θ1 ] θ2 and in that way we finally get an extended
substitution θ0 ] θ1 ] θ2 ] θ3 with which we can now instantiate the conditional
rule’s righthand side, thus ending the conditional rule’s evaluation. Note that
the second and third condition exactly correspond to where clauses in some
functional languages.

Since rewrite conditions are not used in this example (but are used in Fig-
ure 13 below), we briefly explain their use and execution. Further details can be
found in [28]. In general, a reachability condition l→ r may have extra variables
in its righthand side r. It succeeds for a substitution instance lθ (where, given
the incremental way conditions are evaluated, θ will extend the original substi-
tution θ0 obtained by matching the rule’s lefthand side) iff lθ can be rewritten
in 0, 1 or more steps with the module’s rules R to a term whose normal form
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by the module’s equations E and memberships M is a substitution instance of
r up to B-equality. In this way, if l → r was the kth condition, we obtain an
extended substitution θ ] θk that we then use to evaluate condition k + 1 or, if
no more conditions are left, to instantiate the rule’s righthand side. Note that,
in general, the equalities, memberships, and reachability conditions in a rule’s
condition need not appear in any particular order, provided that the variables
appearing in either the right side of an equational condition u := v or the left
side of a rewrite condition l → r have already appeared in previous conditions
and/or in the rule’s lefthand side.

We can now evaluate some logic programs using our semantic definition as
a breadth-first logic programming interpreter. An interesting question is what
pattern t′ to use in a search from an initial state < PL | Pr >, where PL is the
list of predicates that we wish to find a solution for, and Pr is the given Horn logic
program. The answer is that we should look for a pattern of the form: < N |

nil $ S1 | Pr >, indicating that the list of objectives has become empty and
therefore the substitution S1 is a solution. Therefore, calls to our interpreter will
have the general form: search < PL | Pr > =>* < N | nil $ S1 | Pr > .

Example 9 (Search LP-evaluation). Consider the following logic program
defining several family relations between Jane, Mike, Sally, John, and Tom.

mother(jane , mike) .
mother(sally , john) .
father(tom , sally) .
father(tom , erica) .
father(mike , john) .
sibling(X1, X2) :- parent(X3,X1), parent(X3 ,X2)
parent(X1, X2) :- father(X1,X2)
parent(X1, X2) :- mother(X1,X2)
relative(X1, X2) :- parent(X1,X3), parent(X3,X2)
relative(X1, X2) :- sibling(X1,X3), relative(X3,X2)

This logic program is expressed using the syntax of Example 5 as follows:

’mother(’jane , ’mike) :- nil ;
’mother(’sally , ’john) :- nil ;
’father(’tom , ’sally) :- nil ;
’father(’tom , ’erica) :- nil ;
’father(’mike , ’john) :- nil ;
’sibling(x{1}, x{2}) :- ’parent(x{3}, x{1}), ’parent(x{3}, x{2}) ;
’parent(x{1}, x{2}) :- ’father(x{1}, x{2}) ;
’parent(x{1}, x{2}) :- ’mother(x{1}, x{2}) ;
’relative(x{1}, x{2}) :- ’parent(x{1}, x{3}) ,’parent(x{3}, x{2}) ;
’relative(x{1}, x{2}) :- ’sibling(x{1}, x{3}) ,’relative(x{3}, x{2})

We can now evaluate different initial calls for this program by specifying
specific lists of atoms that we seek a solution for. We can do so by searching
for a set of configurations reachable from the given initial call that contains a
solution. As already explained, a solution will correspond to a configuration of
the form nil $ Sub. Depth and solution bounds are automatically provided by
Maude’s search command if desired. In order to simplify the presentation, we
have abbreviated our program to P and we do not show all the bindings returned
by the search command, just the binding associated to the logic-programming
computed substitution.

23



First, we can ask whether Sally and Erica are sisters; the associated reach-
ability graph is finite and no bound is needed.

Maude > search < ’sibling(’sally , ’erica) | P > =>* < N | nil $ S1 | Pr > .
Solution 1 (state 7)
S1 --> (x{1} -> ’sally) ; (x{2} -> ’erica) ; (x{3} -> x{4}) ;

(x{4} -> ’tom) ; (x{5} -> ’sally) ; (x{6} -> x{4}) ; x{7} -> ’erica

Who are the siblings of Erica? Sally and herself.

Maude > search < ’sibling(x{1},’erica) | P > =>* < N | nil $ S1 | Pr > .
Solution 1 (state 19)
S1 --> (x{1} -> x{2}) ; (x{2} -> x{6}) ; (x{3} -> ’erica) ; (x{4} -> x{5}) ;

(x{5} -> ’tom) ; (x{6} -> ’sally) ; (x{7} -> x{5}) ; x{8} -> ’erica

Solution 2 (state 20)
S1 --> (x{1} -> x{2}) ; (x{2} -> x{6}) ; (x{3} -> ’erica) ; (x{4} -> x{5}) ;

(x{5} -> ’tom) ; (x{6} -> ’erica) ; (x{7} -> x{5}) ; x{8} -> ’erica

How many possible siblings are there? Sally and Sally, Sally and Erica, Erica
and Sally, Erica and Erica, John and John, and Mike and Mike.

Maude > search < ’sibling(x{1},x{2}) | P > =>* < N | nil $ S1 | Pr > .
Solution 1 (state 19)
S1 --> (x{1} -> x{3}) ; (x{2} -> x{4}) ; (x{3} -> x{7}) ; (x{4} -> x{9}) ;

(x{5} -> x{6}) ; (x{6} -> ’tom) ; (x{7} -> ’sally) ; (x{8} -> x{6}) ;
x{9} -> ’sally

...

Solution 7 (state 25)
S1 --> (x{1} -> x{3}) ; (x{2} -> x{4}) ; (x{3} -> x{7}) ; (x{4} -> x{9}) ;

(x{5} -> x{6}) ; (x{6} -> ’sally) ; (x{7} -> ’john) ; (x{8} -> x{6}) ;
x{9} -> ’john

Seven solutions are given. Are Jane and John relatives? Yes

Maude > search < ’relative(’jane ,’john) | P > =>* < N | nil $ S1 | Pr > .
Solution 1 (state 11)
S1 --> (x{1} -> ’jane) ; (x{2} -> ’john) ; (x{3} -> x{5}) ; (x{4} -> ’jane) ;

(x{5} -> ’mike) ; (x{6} -> x{5}) ; x{7} -> ’john

Who are the relatives of John? Tom and Jane.

Maude > search [2] < ’relative(x{1},’john) | P > =>* < N | nil $ S1 | Pr > .
Solution 1 (state 28)
S1 --> (x{1} -> x{2}) ; (x{2} -> x{5}) ; (x{3} -> ’john) ; (x{4} -> x{6}) ;

(x{5} -> ’tom) ; (x{6} -> ’sally) ; (x{7} -> x{6}) ; x{8} -> ’john

Solution 2 (state 29)
S1 --> (x{1} -> x{2}) ; (x{2} -> x{5}) ; (x{3} -> ’john) ; (x{4} -> x{6}) ;

(x{5} -> ’jane) ; (x{6} -> ’mike) ; (x{7} -> x{6}) ; x{8} -> ’john

This last call produces an infinite search and we must restrict the search, by
asking for two solutions only.

3.2. Initial Model Semantics and Parameterization

What is the mathematical meaning of a system module mod FOO is (Σ,M ∪
E∪B,R, φ) endm, that is, of a rewrite theory R = (Σ,M ∪E∪B,R, φ)? It is its
initial model TR in the class (indeed, category) of all models of R [90, 19]. What
does TR look like? Why, of course, it models a concurrent system! Its states,
as already pointed out, are the normal forms [w] ∈ CΣ/M∪E,B in the canonical
term algebra of (Σ,M ∪ E ∪ B). What about its transitions? TR provides a
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true concurrency semantics. That is, not only are one-step transitions mod-
eled: concurrent computations are also modeled. Furthermore, TR provides a
notion of equivalence between two different descriptions of the same concurrent
computation. Mathematically, what all this means is that for each kind [s] in
Σ the concurrent computations of R form a category [90, 19], whose objects/s-
tates are precisely the normal forms in CΣ/M∪E,B,[s]. But how are concurrent
computations modeled? They coincide with rewriting logic proofs in R, with
the category structure providing a natural notion of proof equivalence. This is
what one should expect, since any declarative programming language worth its
salt should satisfy the equivalence:

Computation = Deduction

and of course this is exactly what also happens at the equational logic level of
functional modules, where the initial algebra TΣ/M∪E∪B is built up out of the
proof theory of membership equational logic [95].

What about parameterized system modules? They are completely analo-
gous to parameterized functional ones. That is, a parameterized system module
M{X1 :: T1, ... , Xm :: Tm} is a rewrite theory with T1, . . . , Tm its param-
eter theories and is instantiated by views V1, . . . , Vm from T1, . . . , Tm to T’1,
. . . , T’m to the instance M{V1, ... , Vm}. The only new feature is that, al-
though often the parameter theories are functional, some of the theories among
the T1, . . . , Tm may be system theories, i.e., theories of the form th FOO is

(Σ,M ∪ E ∪B,R, φ) endth, where, as done for functional theories, the rewrite
theory R = (Σ,M ∪ E ∪ B,R, φ) is given a “loose semantics,” so that actual
parameter instances of this formal parameter range over the class of all models
of R. Of course, if the parameter theory Ti is a rewrite theory, then the target
theory T’i should also be a rewrite theory, and the view Vi : Ti → T’i is a
theory interpretation between rewrite theories.

Further Reading. Besides [28], the following references may be helpful: (i) for
the semantics of rewrite theories [90, 19]; for the modeling of concurrent systems,
programming languages, and logical systems in rewriting logic [98, 94, 107, 123,
108, 83]; (iii) for the ground coherence property and how to check it [47]; (iv) for
automatically transforming a rewrite theory into a semantically equivalent one
that is ground coherent [100]; and for an even more general notion of rewrite
theory well suited for symbolic computation [100].

4. The Maude Strategy Language

As described in Section 3, rule rewriting is a highly non-deterministic pro-
cess: in general, at every step many rules could be applied at various places. A
finer control on rule application may sometimes be desirable and, although this
may be accomplished in different ways, a strategy language has been proposed
[84, 55, 85] as a specification layer above rewrite theories, providing a cleaner
way to control the rewriting process and respecting the separation of concerns
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principle. That is, the rewrite theory is not modified in any way: strategies pro-
vide an additional specification level above that of rules, so that the same system
module may be executed according to different strategy specifications. The de-
sign of this strategy language was influenced, among others, by ELAN [15] and
Stratego [18].

The usual Maude command for rewriting with strategies is:

srewrite [〈Bound 〉] in 〈ModuleName 〉 : 〈Term 〉 by 〈StrategyExpr 〉 .

It rewrites the term according to the given strategy, which need not be deter-
ministic, and prints all the results. Like in the standard rewriting commands,
the module in which the rewriting is performed can be optionally selected with
the in keyword, the command can be shortened to srew, and a bound on the
number N of solutions to be obtained can be imposed by declaring the optional
[N] just after the command keyword. For example, going back to the Towers
of Hanoi example introduced in Section 3 (page 18), we can consider a basic
strategy which is just rule application, invoked by mentioning the rule label, as
follows:

Maude > srew [3] in HANOI : (0)[3 2 1] (1)[nil] (2)[nil] using move .

Solution 1
rewrites: 1
result Hanoi: (0)[3 2] (1) [1] (2)[nil]

Solution 2
rewrites: 2
result Hanoi: (0)[3 2] (1)[nil] (2) [1]

No more solutions.
rewrites: 2

The two results of applying the move rule to the initial term are shown, and the
interpreter tells us that there are no more solutions, because we have requested
a bound of 3 exceeding the possible one-step moves. In order to use more
elaborate strategies we will need to introduce the complete strategy language,
but before doing that, let us note that in this way we have a standard approach
to model a game: terms represent states, rules represent allowed moves, and
the strategy language can be used to model a (winning) strategy for solving or
playing the game.

As we have seen, rule application is the basic building block of the strategy
language. Besides the rule label, further restrictions can be imposed; its most
general syntax has the form:

label [X1 <- t1, . . . , Xn <- tn] {α1, . . . , αm}

All rules with the given label and exactly m rewriting conditions will be exe-
cuted. Rewriting in these conditions is controlled by the strategies α1, . . . , αm
between curly brackets, which must be omitted if m = 0. Between square
brackets, we can optionally specify an initial ground substitution to be applied
to both sides of the rule.
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The other basic element of the language are the tests, which can be used for
testing a condition on the subject term. Their syntax has the form: match P
s.t. C where P is a pattern and C is an equational condition. On a successful
match and condition check, the result is the initial term; otherwise, the test
does not provide any solution. For example, we can check whether the Towers
of Hanoi puzzle is solved with tests:

Maude > srew (0)[nil] (1)[nil] (2)[3 2 1] using
match (N)[3 2 1] H s.t. N =/= 0 .

Solution 1
result Hanoi: (0)[nil] (1)[nil] (2)[3 2 1]

No more solutions.

We present now various combinators that build more complex strategies out
of rule applications and tests. The concatenation α;β executes the strategy α
and then the strategy β on each α result. The disjunction or alternative α|β
executes α or β; in other words, the results of α|β are both those of α and
those of β. The iteration α* runs α zero or more times consecutively. These
combinators resemble similar constructors for regular expressions. The empty
word and empty language constants are here represented by the idle and fail

operators; the result of applying idle is always the initial term, while fail

generates no solution.
We say that a strategy fails when no solution is obtained. Remember that

failures can happen in less explicit situations: when a rule cannot be applied
to the term, when a test fails, etc. Thus, strategies can explore rewriting paths
that will later be discarded, i.e., they can make tentative attempts.

Conditionals are written α ? β : γ. It executes α and then β on its results,
but if α does not produce any, it executes γ on the initial term. That is, α is
the condition; β the positive branch, which applies to the results of α; and γ
the negative branch, which is applied only if α fails. Some common patterns are
defined as derived operators with their own names such as:

• The or-else combinator is defined by α or-else β ≡ α ? idle : β. It
executes β only if α has failed.

• The negation is defined as not(α) ≡ α ? fail : idle. It fails when α
succeeds and succeeds as an idle when α fails.

• The normalization operator α! ≡ α* ; not(α) applies α until it cannot
be further applied.

The match and rewrite operator matchrew restricts the application of a
strategy to a specific subterm of the subject term. Moreover, we can use it
to obtain information about the subject term by means of pattern matching or
equational calculations, binding new variables if necessary; such data can then
be used to parameterize its substrategies. Its syntax is

matchrew P (X1, . . . , Xn) s.t. C by X1 using α1, . . . , Xn using αn
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T’ = f(... g(...) ...) --> f(... g(...) ...)

T = g(...t...s...) --> g(...t′...s′...)

matching substitution

rewritingαi αj

Figure 6: Behavior of matchrew

mod HANOI -AUX is
protecting SET{Nat} .
op third : Nat Nat Nat -> Nat .
var N M K : Nat .
ceq third(N, M) = K if N, M, K := 0, 1, 2 .

endm

Figure 7: HANOI-AUX module

where P is a pattern with variables X1, . . . , Xn among others, and C is an
optional equational condition. The using clauses associate variables in the
pattern, which are matched by subterms of the matched term, with strategies
that will be used to rewrite them. These variables must be distinct and must
appear in the pattern. The semantics of this operator is illustrated in Figure 6.
All matches of the pattern in the subject term are tried, checking the condition
if any. If none succeeds, the strategy fails. Otherwise, for each match of the
main pattern the subterms matching each Xi are extracted, rewritten according
to αi in parallel, and finally the term is reassembled with the results of rewriting
each subterm in the place of the original subterm.

Strategies can be given a name and are defined in strategy modules. Named
strategies make the use and description of complex strategies more convenient,
and they extend the expressiveness of the language by means of recursive and
mutually recursive strategies. As for functional and system modules, a strategy
module is declared in Maude using the keywords

smod 〈ModuleName 〉 is 〈DeclarationsAndStatements 〉 endsm

A typical strategy module imports the system module whose rewriting it will
control, declares some strategies and specifies their definitions.

To complete the Towers of Hanoi example, we define first the operator third
which gives the third of two posts in an auxiliary functional module HANOI-AUX

(Figure 7), and then define in the strategy module HANOI-SOLVE in Figure 8 a
recursive strategy moveAll with three arguments (two posts and one number of
disks), which we can use to solve the puzzle.

We can now repeat the above rewrite as follows:

Maude > srew (0)[3 2 1] (1)[nil] (2)[nil] using moveAll(0, 2, 3) .

Solution 1
result Hanoi: (0)[nil] (1)[nil] (2)[3 2 1]

No more solutions.
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smod HANOI -SOLVE is
protecting HANOI -RULES .
protecting HANOI -AUX .

strat moveAll : Nat Nat Nat @ Hanoi .

var S T C : Nat .

sd moveAll(S, S, C) := idle .
sd moveAll(S, T, 0) := idle .
sd moveAll(S, T, s(C)) := moveAll(S, third(S, T), C) ;

move[S <- S, T <- T] ;
moveAll(third(S, T), T, C) .

endsm

Figure 8: HANOI-SOLVE module

Although strategies control and restrict rewriting, they do not make the pro-
cess deterministic. A strategy may allow multiple rewriting paths, produced by
alternative local decisions that may appear during its execution. The rewrite

command solves this non-determinism by choosing a single alternative using a
fixed criterion. On the contrary, the search command explores all the possible
rule applications looking for a term matching the given goal. The srewrite

command coincides with search in the exhaustive exploration of the alterna-
tives, looking, in this case, for strategy solutions. Hence, srewrite can be seen
as a search for solutions, not in the complete rewriting tree of search, but in
a subtree pruned by the effect of the strategy. How this tree is explored has
relevant implications for the command output and performance.

The srewrite command explores the rewriting graph following a fair policy
which ensures that all solutions that are reachable in a finite number of steps
are eventually found, unless the interpreter runs out of memory. Without being
a breadth-first search, multiple alternative paths are explored in parallel. An
alternative rewriting command dsrewrite (depth strategic rewrite) explores the
strategy rewriting graph in depth. It is written like a srewrite command but
with a different starting keyword, which can be abbreviated to dsrew.

dsrewrite [〈Bound 〉] in 〈ModuleName 〉 : 〈Term 〉 by 〈StrategyExpr 〉 .

The disadvantage is that the depth-first exploration is incomplete, because
it could go down an infinite branch before finding some reachable solutions,
which would be missed; see next section for an example. The advantage is that
dsrewrite can be more efficient than srewrite.

4.1. Logic Programming Running Example

In the same way that we can use the Maude strategy language to specify
strategies to solve games, like the previous Towers of Hanoi example, another
typical application of strategies is the execution of operational semantics for
programming languages, which are specified by means of rules which require
in many cases to be executed in a specific way. Again, language expressions
become terms in its Maude representation, operational semantics rules become
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rewrite rules, and strategies are used to control rewriting in the appropriate way.
For example, the Maude strategy language has been used in this sense in order
to define the operational semantics for the parallel functional programming lan-
guage Eden [72, 87], and also in the definition of modular structural operational
semantics with strategies [17]. In this section, the strategy language is used
to define the semantics of a logic programming language similar to Prolog [33],
continuing with Examples 5 and 8 in Section 3.1. Strategies will be used to
discard failed proofs, to enforce the Prolog search strategy, and to implement
advanced features like negation. Although it is also possible to implement the
Prolog cut in this way, this feature will not be shown here (see [24]).

The rewrite command is not useful as a logic programming interpreter
because it simply explores a single rewriting path, thus a single proof path. This
is clearly not enough to show multiple solutions, but it may also be insufficient
to find even a single one. An admissible logic programming interpreter must
consider all possible proof paths and be able to resume them when the execution
arrives to a dead path. In Example 8 we used the search command as a possible
solution. Here, strategies will be used instead.

First, we define an auxiliary predicate isSolution in module LP-EXTRA in
Figure 9 to decide whether a given configuration is a solution. We then define
in the strategy module PROLOG in Figure 10 the recursive strategy solve that
applies the clause rule in Example 8 until a solution is found, and rejects any
rewriting path that does not end in one. The exhaustive search of the srewrite
command shows all reachable solutions for the initial predicate.

mod LP-EXTRA is
protecting LP -SEMANTICS .
op isSolution : Configuration -> Bool .
var N : Nat . var S : Substitution .
var Pr : Program . var Conf : Configuration .
eq isSolution(< N | nil $ S | Pr >) = true .
eq isSolution(Conf) = false [owise] .

endm

Figure 9: LP-EXTRA module

smod PROLOG is
protecting LP -EXTRA .
strat solve @ Configuration .
var Conf : Configuration .
sd solve := match Conf s.t. isSolution(Conf)

? idle : (clause ; solve) .
endsm

Figure 10: PROLOG module

Now, the solve strategy can be applied to the previous examples:

Maude > srew < ’parent(’tom , x{1}) | family > using solve .

Solution 1
rewrites: 453
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mod PL-SIMPLIFIER -BASE is
including LP-SEMANTICS .
sort VarSet .
subsort Variable < VarSet .
op empty : -> VarSet .
op _;_ : VarSet VarSet -> VarSet [ctor assoc comm id: empty] .
....
op occurs : Configuration -> VarSet .
op simplify : Substitution VarSet -> Substitution .
op solution : Substitution -> Configuration [ctor format (g! o)] .

var N : Nat . var S : Substitution .
var Pr : Program . var VS : VarSet .

rl [solution] : < N | nil $ S | Pr >
=> solution(simplify(S, VS)) [nonexec] .

endm

Figure 11: PL-SIMPLIFIER-BASE module (notice the ellipsis)

result Configuration:
< 3 | nil $ x{1} -> x{3} ; x{2} -> ’tom ; x{3} -> ’sally

| (omitted) >

Solution 2
rewrites: 489
result Configuration:

< 3 | nil $ x{1} -> x{3} ; x{2} -> ’tom ; x{3} -> ’erica
| (omitted) >

No more solutions.
rewrites: 605

As the example above shows, the resulting configurations are not easily read-
able: they are overloaded with intermediate data like the full program, which
has been omitted here, and mappings on variables that do not occur in the initial
predicate. To display solutions in a more readable form, we will use a wrapper
strategy. First, some auxiliary functions are defined in the PL-SIMPLIFIER-BASE
system module in Figure 11 along with a solution rule which restricts the sub-
stitution to the variables in the given set, after resolving them by transitivity.

The strategy wsolve in the strategy module PROLOG-SIMPLIFIER in Fig-
ure 12 records the variables that occur in the initial configuration predicate,
then executes the previous solve strategy, and finally applies the solution

rule with the initial variable set, thus restricting the substitution to those vari-
ables.

Now, the previous example can be rerun with wsolve, obtaining more concise
and clearer answers.

Maude > srew < ’parent(’tom , x{1}) | family > using wsolve .

Solution 1
rewrites: 511
result Configuration: solution(x{1} -> ’sally)

Solution 2
rewrites: 569
result Configuration: solution(x{1} -> ’erica)

31



smod PROLOG -SIMPLIFIER is
protecting PL -SIMPLIFIER -BASE .
protecting PROLOG .

strat wsolve @ Configuration .

var Conf : Configuration . var VS : VarSet .

sd wsolve := matchrew Conf s.t. VS := occurs(Conf)
by Conf using (solve ; solution[VS <- VS]) .

endsm

Figure 12: PROLOG-SIMPLIFIER module

No more solutions.
rewrites: 641

We can also observe that the order in which solutions appear depends on the
way the rewriting tree is explored. With the dsrewrite command the results
will appear in the same order as in Prolog, because both explore the derivation
tree in depth. However, the srewrite command will often obtain shallower
solutions first.

Maude > dsrew < ’p(x{1}) | ’p(x{1}) :- ’q(x{1}) ; ’p(’a) :- nil ;
’q(’b) :- nil > using wsolve .

Solution 1
rewrites: 82
result Configuration: solution(x{1} -> ’b)

Solution 2
rewrites: 111
result Configuration: solution(x{1} -> ’a)

No more solutions.
rewrites: 117

Maude > srew < ’p(x{1}) | ’p(x{1}) :- ’q(x{1}) ; ’p(’a) :- nil ;
’q(’b) :- nil > using wsolve .

Solution 1
rewrites: 105
result Configuration: solution(x{1} -> ’a)

Solution 2
rewrites: 117
result Configuration: solution(x{1} -> ’b)

No more solutions.
rewrites: 95

The benefit of using srewrite is that all reachable solutions are shown. In
Prolog and with dsrewrite some of them may be hidden by going down a
non-terminating branch.

Maude > dsrew < ’p(x{1}) | ’p(x{1}) :- ’p(x{1}) ; ’p(’a) :- nil >
using wsolve .

Debug (1)> abort . *** non -terminating

Maude > srew < ’p(x{1}) | ’p(x{1}) :- ’p(x{1}) ; ’p(’a) :- nil >
using wsolve .
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mod LP-EXTRA -NEGATION is
including LP-EXTRA .

var Q : Qid . var PL : PredicateList .
var Conf : Configuration . var NeTL : NeTermList .

crl [negation] :
< N | ’\+(Q[NeTL]), PL $ S | Pr >
=> < N | PL $ S | Pr >
if < N | Q(NeTL) $ S | Pr > => Conf .

endm

Figure 13: LP-EXTRA-NEGATION module

smod PROLOG -NEGATION is
protecting LP -EXTRA -NEGATION .

strat solve -neg @ Configuration .

var Conf : Configuration .

sd solve -neg := match Conf s.t. isSolution(Conf) ? idle :
(( clause | negation{not(solve -neg)}) ; solve -neg) .

endsm

Figure 14: PROLOG-NEGATION module

Solution 1
rewrites: 109 in 0ms cpu (3ms real) (~ rewrites/second)
result Configuration: solution(x{1} -> ’a)

Debug (1)> abort . *** non -terminating

We consider now the negation feature. In logic programming, the concept
of negation is complicated: facts and predicates express positive knowledge, so
we could either explicitly assert what is false or assume that any predicate that
cannot be derived from the facts is considered as false. The last approach is
known as negation as failure: the negation of a predicate holds if the predicate
cannot be proved, no matter the values its variables take. This cannot be
expressed with Horn clauses but can be easily implemented using strategies and
an extra rewriting rule, added to LP-EXTRA system module in Figure 9. Like in
ISO Prolog, in the system module LP-EXTRA-NEGATION in Figure 13 negation is
represented as a normal predicate6 named \+, which can be seen as the ASCII
representation of the not provable sign 0.

The negation rule only removes the negation predicate from the objective
lists if its rewriting condition holds. By its own semantics, negation never binds
variables, so the substitution remains unchanged. The initial term of the rewrit-
ing condition contains the negated predicate as its only objective. Whether

6Hence, its argument is written as a term, i.e., brackets should be used instead of paren-
theses.
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this term can be rewritten to a solution configuration determines whether the
negated predicate can be satisfied. Hence, we need to control the condition with
a strategy that fails whenever that happens. We do so in the strategy module
PROLOG-NEGATION in Figure 14. The strategy is similar to the original solve
strategy, but the negation rule can be applied when a negated predicate is
on top of the objective list. The strategy not(solve-neg) fails if solve-neg

finds a solution for the negated predicate. Otherwise, it behaves like an idle,
triggering the rule application. Thus, it is a suitable strategy for the rewriting
condition.

We can illustrate the negation feature using the family tree example. Again,
to obtain simplified results, we use the strategy wsolve-neg, defined from
solve-neg as wsolve was defined from solve in PROLOG-SIMPLIFIER (a generic
implementation is possible using parameterized strategy modules, see [24]). A
predicate ’no-children claims that someone does not have descendants:

Maude > srew < ’no -children(’erica) | family ;
’no-children(x{1}) :- ’\+(’parent[x{1}, x{2}]) > using solve -neg .

Solution 1
rewrites: 887
result Configuration: solution(empty)

No more solutions.
rewrites: 887

Maude > srew < ’no -children(’mike) | family ;
’no-children(x{1}) :- ’\+(’parent[x{1}, x{2}]) > using solve -neg .

No more solutions.
rewrites: 894

As mentioned at the beginning of this section, the Prolog cut has also been
implemented using strategies in this way (details will appear in [24]). These
examples show that our framework can be used to fully realize Kowalski’s motto
“Algorithm = Logic + Control” [78], putting into practice the separation of
concerns allowed by our strategy language. The logic of a system (be it a game
or a language operational semantics or whatever) is declaratively specified by
means of equations and rules. The concrete, controlled way of executing such
rules, when desired or when necessary, is written as a strategy on top of them.
The separation between logic and control allows us to have different controls
for the same logic, like, for example, having a logic programming interpreter
which is complete because it uses breadth-first search instead of the standard
depth-first search used by Prolog.

Further Reading. The Maude strategy language was introduced in a series
of conference papers [84, 55, 85] and applied in different areas, including oper-
ational semantics (see [72, 87, 17], among others). More current work includes
the extension of the language to include parameterized strategies, and the devel-
opment of model-checking techniques for systems controlled by strategies. More
examples and further details can be found in [24].
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5. Object-Based Programming

In the design of distributed systems, the motto think globally, act locally
expresses the essential philosophy. Each object in a distributed system has only
a quite limited partial view of the global state and can only act locally, typically
by communicating with other objects and changing its local state, to achieve
some global system goals. A well-designed distributed system uses such local
actions to achieve a desired global behavior.

Rewriting logic [90] is precisely a logic to express local actions in a concur-
rent system by means of rewrite rules. As explained in the Introduction, the
concurrent systems that can be specified in rewriting logic, and therefore in
Maude, can be widely different. In this sense, rewriting logic and Maude are
completely ecumenical, since they do not prescribe any particular style of con-
current, synchronous or asynchronous, interaction at all: any such style can be
supported. Nevertheless, the overwhelming majority of distributed systems and
communication protocols can be most naturally expressed as made up of con-
current objects having their own local states that communicate with each other
by message passing. Given the great importance of distributed object-based sys-
tems, Maude provides special support for such systems in the following ways: (i)
a special notation is supported both in Maude and in its Full Maude extension;
(ii) the frewrite command, when applied to object-based systems, provides
an object and message fair rewriting strategy for simulation purposes; (iii) sev-
eral kinds of external objects allow regular Maude objects to interact with the
external world; and (iv) using such external objects, a Maude object-based dis-
tributed system design can be seamlessly transformed (within Maude) into an
actual distributed system implementation. We discuss all these aspects in this
section.

5.1. Modeling Concurrent Object Systems in Maude

To begin with, we explain below Maude’s syntax support for concurrent
objects, and illustrate how a concurrent object system design can be expressed
in Maude using such a syntax. As a running example we consider the goal
of designing a communication protocol that can achieve in-order, fault-tolerant
communication in an asynchronous medium where messages can arrive out-of-
order and can furthermore be lost. The first order of business is to specify the
distributed states of such a system that we will call configurations. After this
is done, we can then specify its concurrent behavior by means of rewrite rules
that define the local actions that each object in such a system can perform to
achieve in-order fault-tolerant communication.

A system’s distributed state or configuration can be naturally understood
as a “soup” or “ether” medium in which both objects and messages “float.” In
such a fluid medium, objects and messages can come together and participate
in concurrent actions. We can model such a fluid medium mathematically by
means of structural axioms of associativity and commutativity. That is, we
can think of a configuration as a multiset of objects and messages. Since each
object should have a unique identifier, the objects in the system should form a
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set. However, there can be several copies of a message floating around in the
system. All these ideas are succinctly captured by the CONFIGURATION module
in Maude’s standard prelude, shown in Figure 15, which can be used as a basis
for defining many different concurrent object-based systems.

mod CONFIGURATION is
sorts Attribute AttributeSet .
subsort Attribute < AttributeSet .
op none : -> AttributeSet [ctor] .
op _,_ : AttributeSet AttributeSet -> AttributeSet

[ctor assoc comm id: none] .

sorts Oid Cid Object Msg Portal Configuration .
subsort Object Msg Portal < Configuration .
op <_:_|_> : Oid Cid AttributeSet -> Object [ctor object] .
op none : -> Configuration [ctor] .
op __ : Configuration Configuration -> Configuration

[ctor config assoc comm id: none] .
op <> : -> Portal [ctor] .

endm

Figure 15: CONFIGURATION module

The essential facts about concurrent object configurations are all stated in
the CONFIGURATION module. They are multisets of objects and messages belong-
ing, respectively, to the subsorts Object and Msg. These multisets are built with
the “empty syntax” (juxtaposition) associative-commutative union operator __,
having none (empty configuration) as its identity element. Objects themselves
are record-like structures having a name or object identifier of sort Oid, belong-
ing to an object class whose name has sort Cid of class identifiers, and having
an associative-commutative set of attribute-value pairs of sort AttributeSet

built with the associative-commutative set union operator _,_ with empty set
none as its identity. Each such attribute-value pair has sort Attribute and
can have any syntax we like. Likewise, we can use any syntax we like to define
different kinds of messages. However, a message operator should be of sort Msg
or a subsort of it, should have the attribute msg, and the first argument of any
message operator should be the Oid of the message’s addressee.

All these ideas can be illustrated by defining configurations of objects and
messages for our fault-tolerant communication protocol in the functional mod-
ule FT-COMM-CONF in Figure 16. Objects belong to one of the classes Sender or
Receiver. In addition to importing the CONFIGURATION module, the FT-COMM-CONF
module imports QID-LIST from Maude’s prelude. This functional module pro-
vides a sort QidList formed from elements of sort Qid using the associative
concatenation (empty syntax) operator __, having nil (empty list) as its iden-
tity element.

Here is a typical configuration for our desired fault-tolerant in-order com-
munication protocol:

< ’Alice : Sender | buff: ’a ’b ’c ’d, rec: ’Bob , cnt: 0 >
< ’Bob : Receiver | buff: ’a, snd: ’Alice , cnt: 1 >
(to ’Alice from ’Bob ack 0)
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mod FT-COMM -CONF is
extending CONFIGURATION .
protecting NAT + QID -LIST .

ops Sender Receiver : -> Cid [ctor] .
subsort Qid < Oid .

op cnt:_ : Nat -> Attribute [ctor gather (&)] .
op buff:_ : QidList -> Attribute [ctor gather (&)] .
op snd:_ : Oid -> Attribute [ctor gather (&)] .
op rec:_ : Oid -> Attribute [ctor gather (&)] .

op to_from_val_cnt_ : Oid Oid Qid Nat -> Msg [ctor msg] .
op to_from_ack_ : Oid Oid Nat -> Msg [ctor msg] .

endm

Figure 16: FT-COMM-CONF module

In this configuration, there is a sender object ’Alice and a receiver object ’Bob
of respective classes Sender and Receiver. Both senders and receivers have
a buffer attribute buff: whose value is a list of quoted identifiers, either re-
maining to be sent by the sender, or already received by the receiver. Both
also have a counter attribute cnt: which is used to ensure in-order commu-
nication. Initially, the value of the cnt: attribute is 0 for both senders and
receivers, which gets increased along the communication as sends are received
and acknowledged. Furthermore, to establish the target of the communication,
sender objects have a receiver attribute rec: with the name of the object to
which values in the list should be sent. Likewise, receiver objects have a sender
attribute snd: with the name of the sender from which data is expected. Sender
objects like ’Alice send values in messages such as to ’Bob from ’Alice val

’a cnt 0. This message means that it is the first value in the list being trans-
mitted and its contents is ’a. In the above configuration this first message was
already received by ’Bob who now stores it in its buffer and is awaiting the sec-
ond value, whose counter will be 1. However, due to the asynchronous nature
of the communication, sender ’Alice is not yet aware that the first value has
already been received and is still holding it in its send buffer in case it was lost
and has to be re-sent. In the meantime, receiver ’Bob did send a message to

’Alice from ’Bob ack 0 acknowledging receipt of the first value ’a. But this
acknowledgement has not yet been received by sender ’Alice.

Of course, the functional module FT-COMM-CONF does not do anything. It
describes, if you will, the statics, i.e., just the distributed states of our system.
Actions themselves, the system’s dynamics, are defined in the system module
FT-COMM in Figure 17. The rules in FT-COMM are almost self-explanatory. Sender
objects send the first value in their current list, plus a counter, to the receiver
with the snd rule. However, they still keep the sent value in their buffer until an
acknowledgement is received. If the expected acknowledgement is received, the
sent value can be cleared from the send buffer and the counter is increased for
the next value to be sent (rule rec-ack1). Note that the case where the sender
receives an acknowledgement for counter value M with an empty buffer will not
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happen for starting configurations with only objects. The case of a duplicated
acknowledgement message that was already received before is handled by rule
rec-ack2, where the acknowledgement message is just discarded. Receiver ob-
jects perform two actions. Rule rec1 describes the case where the “expected”
value arrives, is put into the receive buffer, the counter is increased, and an
acknowledgement message is sent to the sender. The case where the sent value
was already received is handled by the rule rec2, where the receiver’s local state
does not change, but an acknowledgement message is nevertheless sent, since a
previous acknowledgement may have been lost.

mod FT-COMM is
including FT-COMM -CONF .

var Q : Qid . var L : QidList .
vars N M : Nat . vars A B : Oid .

rl [snd] : < A : Sender | buff: Q L, rec: B, cnt: M >
=> < A : Sender | buff: Q L, rec: B, cnt: M >

(to B from A val Q cnt M)
[print "[snd]: " A " sends " Q " to " B] .

rl [rec1] :
(to B from A val Q cnt M)
< B : Receiver | buff: L, snd: A, cnt: M >
=> < B : Receiver | buff: L Q, snd: A, cnt: s M >

(to A from B ack M)
[print "[rec1]: " B " receives new " Q " from " A] .

crl [rec2] :
(to B from A val Q cnt N)
< B : Receiver | buff: L, snd: A, cnt: M >
=> < B : Receiver | buff: L, snd: A, cnt: M >

(to A from B ack N)
if N < M
[print "[rec2]: " B " receives old " Q " from " A] .

rl [rec -ack1] :
(to A from B ack M)
< A : Sender | buff: Q L, rec: B, cnt: M >
=> < A : Sender | buff: L, rec: B, cnt: s M >
[print "[rec -ack1]: " A " receives 1st ack " M " from " B] .

crl [rec -ack2] :
(to A from B ack N)
< A : Sender | buff: L, rec: B, cnt: M >
=> < A : Sender | buff: L, rec: B, cnt: M >
if N < M
[print "[rec -ack2]: " A " receives old ack " N " from " B] .

endm

Figure 17: FT-COMM module

To show the progress of the computation we have added print attributes to
each rule. In general, the print attribute allows one to specify information to
be printed when a statement (equation, membership axiom, rule, or strategy)
is executed, providing a minimized and flexible trace capability. If printing
is turned on, when a statement with a print attribute is applied the pattern
following print is instantiated using the corresponding matching substitution.

The FT-COMM module does indeed ensure in-order fault-tolerant communi-
cation. Furthermore, if the sender was sending a list of length k, counters in
the sender and the receiver were originally 0, and the receiver’s buffer was orig-
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inally empty, there is a terminating rewrite sequence in whose final state both
the sender and the receiver counters have the same value k, the sender’s buffer
is empty, and the original list is now in the receiver’s buffer.

We use Maude’s frewrite command to explore the behavior of FT-COMM. As
discussed in Section 3.1 the frewrite command implements a rule and position
fair rewriting strategy. In the special case of object-message configurations,
such as the FT-COMM configurations, frewrite implements an object-message
fair strategy. Roughly speaking, in each round, the strategy attempts to apply
object-message rules to all existing object-message pairs and then attempts a
single non-object-message rewrite of the resulting configuration using the re-
maining rules.

For object-message fair rewriting, the configuration constructor must have
the configuration attribute, object constructors must have the object at-
tribute, the first argument must be the object identifier, and message construc-
tors must have the message (or msg) attribute with first argument an object
identifier (the intended receiver). All of these requirements are met by the
FT-COMM module—and also by the FT-COMM-IN-FAULTY-ENV below. To be an
object-message rule, the lefthand side must have a configuration constructor on
top with two arguments: A, with a message constructor on top, and B, with an
object constructor on top, such that the first arguments of A and B are identi-
cal, i.e. A is a message for B. The rules rec1, rec2, rec-ack1, and rec-ack2 of
FT-COMM are object-message rules. However the rule snd is not—and the rules
added by FT-COMM-IN-FAULTY-ENV below are not either. The full specification
of frewrite and more examples can be found in [28].

We see in the output below that the protocol terminates as expected.

Maude > frew
< ’Alice : Sender | cnt: 0, buff: ’a ’b ’c ’d, rec: ’Bob >
< ’Bob : Receiver | cnt: 0, buff: nil , snd: ’Alice > .

result Configuration:
< ’Alice : Sender | cnt: 4, buff: nil , rec: ’Bob >
< ’Bob : Receiver | cnt: 4, buff: ’a ’b ’c ’d, snd: ’Alice >

To see how the protocol progresses, let us rewrite one step at a time using
Maude’s continue (abbreviated cont) command. We see that first ’Alice

sends ’a to ’Bob with count 0.

Maude > frew [1] < ’Alice : Sender | cnt: 0, buff: ’a ’b ’c ’d, rec: ’Bob >
< ’Bob : Receiver | cnt: 0, buff: nil , snd: ’Alice > .

result (sort not calculated): (
< ’Alice : Sender | cnt: 0, buff: ’a ’b ’c ’d, rec: ’Bob >
to ’Bob from ’Alice val ’a cnt 0)
< ’Bob : Receiver | cnt: 0, buff: nil , snd: ’Alice >

In the next step, ’Bob receives ’a and sends an acknowledgement message to
’Alice with count 0.

Maude > cont 1 .
result Configuration:

< ’Alice : Sender | cnt: 0, buff: ’a ’b ’c ’d, rec: ’Bob >
< ’Bob : Receiver | cnt: 1, buff: ’a, snd: ’Alice >
to ’Alice from ’Bob ack 0

In the third step ’Alice sends ’a to ’Bob with count 0 again, since it has not
yet received an ack message.
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Maude > cont 1 .
result (sort not calculated): (

< ’Alice : Sender | cnt: 0, buff: ’a ’b ’c ’d, rec: ’Bob >
to ’Bob from ’Alice val ’a cnt 0)
< ’Bob : Receiver | cnt: 1, buff: ’a, snd: ’Alice >
to ’Alice from ’Bob ack 0

In the fourth step, ’Alice receives the count 0 acknowledgement, increments its
counter, and removes ’a from its list. Also, ’Bob receives the repeated ’a with
count 0 and sends another ack. This is two rewrites, although the command was
to continue 1 step. This is because the frewrite strategy attempts to deliver
a message to each object in a given round.

Maude > cont 1 .
result Configuration:

< ’Alice : Sender | cnt: 1, buff: ’b ’c ’d, rec: ’Bob >
< ’Bob : Receiver | cnt: 1, buff: ’a, snd: ’Alice >
to ’Alice from ’Bob ack 0

Continue again, ’Alice sends ’b to ’Bob with count 1.

Maude > cont 1 .
result (sort not calculated): (

< ’Alice : Sender | cnt: 1, buff: ’b ’c ’d, rec: ’Bob >
to ’Bob from ’Alice val ’b cnt 1
< ’Bob : Receiver | cnt: 1, buff: ’a, snd: ’Alice >
to ’Alice from ’Bob ack 0

To see the difference between the strategies of the rewrite and frewrite

commands, we use a configuration with two instances of the protocol, that is, two
sender-receiver pairs. Using frewrite to execute the parallel protocol sessions,
with the print attribute activated we see that activity of the two sessions is
interleaved:

Maude > set print attribute on .
Maude > frew [24]

< ’Alice : Sender | cnt: 0, buff: (’a ’b ’c ’d), rec: ’Bob >
< ’Ada : Sender | cnt: 0, buff: (’a ’b ’c ’d), rec: ’Boris >
< ’Bob : Receiver | cnt: 0, buff: nil , snd: ’Alice >
< ’Boris : Receiver | cnt: 0, buff: nil , snd: ’Ada > .

[snd]: ’Alice sends ’a to ’Bob
[snd]: ’Ada sends ’a to ’Boris
[rec1]: ’Bob receives new ’a from ’Alice
[rec1]: ’Boris receives new ’a from ’Ada
[snd]: ’Alice sends ’a to ’Bob
[snd]: ’Ada sends ’a to ’Boris
[rec -ack1]: ’Alice receives 1st ack 0 from ’Bob
[rec -ack1]: ’Ada receives 1st ack 0 from ’Boris
[rec2]: ’Bob receives old ’a from ’Alice
[rec2]: ’Boris receives old ’a from ’Ada

...
[snd]: ’Alice sends ’d to ’Bob
[snd]: ’Ada sends ’d to ’Boris
[rec -ack2]: ’Alice receives old ack 2 from ’Bob
[rec -ack2]: ’Ada receives old ack 2 from ’Boris
[rec1]: ’Bob receives new ’d from ’Alice
[rec1]: ’Boris receives new ’d from ’Ada
[snd]: ’Alice sends ’d to ’Bob
[snd]: ’Ada sends ’d to ’Boris
[rec -ack1]: ’Alice receives 1st ack 3 from ’Bob
[rec -ack1]: ’Ada receives 1st ack 3 from ’Boris
[rec2]: ’Bob receives old ’d from ’Alice
[rec2]: ’Boris receives old ’d from ’Ada
rewrites: 69 in 2ms cpu (3ms real) (23334 rewrites/second)
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result Configuration:
< ’Alice : Sender | cnt: 4, buff: nil , rec: ’Bob >
< ’Ada : Sender | cnt: 4, buff: nil , rec: ’Boris >
< ’Bob : Receiver | cnt: 4, buff: (’a ’b ’c ’d), snd: ’Alice >
< ’Boris : Receiver | cnt: 4, buff: (’a ’b ’c ’d), snd: ’Ada >
(to ’Alice from ’Bob ack 3)
(to ’Ada from ’Boris ack 3)

If instead we use rewrite, the rules are applied first to objects and messages
in one session, and when that terminates, the rules are applied to objects and
messages of the other session.

Maude > rew [24]
< ’Alice : Sender | cnt: 0, buff: (’a ’b ’c ’d), rec: ’Bob >
< ’Ada : Sender | cnt: 0, buff: (’a ’b ’c ’d), rec: ’Boris >
< ’Bob : Receiver | cnt: 0, buff: nil , snd: ’Alice >
< ’Boris : Receiver | cnt: 0, buff: nil , snd: ’Ada > .

[snd]: ’Alice sends ’a to ’Bob
[rec1]: ’Bob receives new ’a from ’Alice
[rec -ack1]: ’Alice receives 1st ack 0 from ’Bob
[snd]: ’Alice sends ’b to ’Bob

...
[snd]: ’Alice sends ’d to ’Bob
[rec1]: ’Bob receives new ’d from ’Alice
[rec -ack1]: ’Alice receives 1st ack 3 from ’Bob
[snd]: ’Ada sends ’a to ’Boris
[rec1]: ’Boris receives new ’a from ’Ada
[rec -ack1]: ’Ada receives 1st ack 0 from ’Boris

...
[snd]: ’Ada sends ’d to ’Boris
[rec1]: ’Boris receives new ’d from ’Ada
[rec -ack1]: ’Ada receives 1st ack 3 from ’Boris
rewrites: 25 in 1ms cpu (1ms real) (18037 rewrites/second)
result Configuration:

< ’Alice : Sender | cnt: 4, buff: nil , rec: ’Bob >
< ’Ada : Sender | cnt: 4, buff: nil , rec: ’Boris >
< ’Bob : Receiver | cnt: 4, buff: (’a ’b ’c ’d), snd: ’Alice >
< ’Boris : Receiver | cnt: 4, buff: (’a ’b ’c ’d), snd: ’Ada >

In the case of finite behaviors, in the end the result is the same, but if the
protocol execution did not terminate, then using rewrite one of the sessions
might never execute, while using frewrite both sessions make progress.

Note that FT-COMM is a protocol that not only ensures in-order communica-
tion, but is also fault-tolerant. But can we also model a faulty environment where
messages can be lost? Yes, we can do so in the system module FAULTY-ENV, in
Figure 18, which adds such a faulty environment to FT-COMM. What is remark-
able about the communication protocol specified in FT-COMM is that it still works
in this faulty environment under suitable fairness assumptions. Of course, if as
soon as every message is sent it is immediately destroyed by the loss1 or the
loss2 rules, no communication will ever happen. But this is clearly an unfair
behavior which makes the protocol’s rules hopeless. By assuming fair execu-
tions and defining an equational abstraction [106] that collapses a multiset of
messages into a set, the correctness of the FT-COMM protocol in such a faulty en-
vironment can actually be model checked using Maude’s LTLR model checker
[10]. For more on Maude’s LTLR model checker see Section 9.

If we repeat the above frew command in the FT-COMM-IN-FAULTY-ENV mod-
ule we see that the first few steps are the same as when done in the module
FT-COMM. However, instead of ’Alice receiving the ack from ’Bob in the fourth
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mod FT-COMM -IN -FAULTY -ENV is
including FT-COMM .

var Q : Qid . var M : Nat . vars A B : Oid .

rl [loss1] : (to B from A val Q cnt M) => none
[print "[loss1]: lost val " Q " to " B] .

rl [loss2] : (to A from B ack M) => none
[print "[loss2]: lost ack " M " to " A] .

endm

Figure 18: FT-COMM-IN-FAULTY-ENV module

step, the message is lost.

Maude > frew [1] < ’Alice : Sender | cnt: 0, buff: ’a ’b ’c ’d, rec: ’Bob >
< ’Bob : Receiver | cnt: 0, buff: nil , snd: ’Alice > .

[snd]: ’Alice sends ’a to ’Bob
[rec1]: ’Bob receives new ’a from ’Alice
[snd]: ’Alice sends ’a to ’Bob
[loss2]: lost ack 0 to ’Alice
[rec2]: ’Bob receives old ’a from ’Alice
...

But is this all? Has the FT-COMM example illustrated, all there is to say
about distributed objects in Maude? Not at all. It has illustrated the most
basic possibilities, but many more remain. Here are some: (1) The Full Maude
extension supports an even more expressive syntax for objects in which object
classes can be structured in multiple inheritance hierarchies, rewrite rules can be
specified more succinctly and are automatically inherited by subclasses [92, 28].
Furthermore, such class inheritance solves the well-known inheritance anomaly
between subclassing and concurrency [93]. (2) Configurations need not be flat :
they can have a nested structure —what we call a Russian dolls structure.
Furthermore, such a nested structure can provide very useful mechanisms for
meta-object-based reflection [110]. (3) Many distributed algorithms use time,
and sometimes physical space, in an essential way. Both time and space can
be modeled in an object-based manner in Maude using the Real-Time Maude
tool [113] (see, e.g., [114, 79] for applications to sensor networks and to mobile
ad-hoc networks). (4) Not only time, but also randomness in distributed object
systems can be modeled by probabilisitic rewrite rules [1] (see, e.g., [76, 14] for
two applications, respectively to sensor protocols and to cloud storage systems).

5.2. External Objects

Maude objects should be able to interact by message-passing with a variety
of external objects that represent external entities with state, including the user
regarded as another external object. Any configuration of Maude objects that
wish to exchange messages with external objects must include a special portal
constructor, defined in module CONFIGURATION:

sort Portal .
subsort Portal < Configuration .
op <> : -> Portal [ctor] .
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From an implementation point of view, the main purpose of having a portal
subterm in a configuration is to avoid the degenerate case of a configuration
that consists just of an object waiting for a message from outside of the con-
figuration. This would be problematic because the special behavior for object-
message rewriting and exchanging messages with external objects is attached to
the configuration constructor:7

op __ : Configuration Configuration -> Configuration
[ctor config assoc comm id: none] .

Exchanging messages with external objects is enabled by the erewrite com-
mand, which performs fair rewriting but also checks for messages in a config-
uration that are addressed to external objects and checks for messages from
external objects that are queued, waiting to enter a configuration containing a
specific object.

Certain predefined external objects are available and some of them are object
managers that can create more ephemeral external objects that represent entities
such as files and sockets or, as we will see in Section 8.3, virtual copies of the
Maude interpreter itself.

5.2.1. Standard Streams

Each Unix process has three I/O channels, called standard streams: stan-
dard input (stdin), standard output (stdout) and standard error (stderr). In
Maude, these are represented as three unique external objects, that are defined
in a predefined module STD-STREAM.

After more than 20 years you can now write a “Hello World!” program in
Maude. Module HELLO in Figure 19 shows a very simple program implementing
an interaction with the user, which is asked to introduce his/her name to be
properly greeted. The equation for run produces a starting configuration, con-
taining the portal, a user object to receive messages, and a message to stdin to
read a line of text from the keyboard. When stdin has a line of text, it sends
the text to the requesting object in a gotLine message.

Maude > erew run .
What is your name? Joe
Hello Joe
result Configuration: <> wrote(myObj , stdout) < myObj : myClass | none >

5.2.2. File I/O

Unlike standard streams, of which there are exactly three, a Unix process
may have many different files open at any one time. Thus in order to cre-
ate new file handle objects as needed, we have a unique external object called
fileManager. To open a file, the fileManager is sent a message openFile.
On success, an openedFile message is returned, with the name of an external

7While a single object or message has sort Configuration there is no configuration con-
structor for such a degenerate configuration. Requiring a portal term ensures that there is
a configuration constructor for configurations which otherwise have only a single object or
message.
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mod HELLO is
including STD -STREAM .

op myClass : -> Cid .
op myObj : -> Oid .
op run : -> Configuration .

var O : Oid .
var A : AttributeSet .
var S : String .
var C : Char .

eq run
= <>

< myObj : myClass | none >
getLine(stdin , myObj , "What is your name? ") .

rl < myObj : myClass | A >
gotLine(myObj , O, S)

=> < myObj : myClass | A >
if S =/= ""
then write(stdout , myObj , "Hello " + S)
else none
fi .

endm

Figure 19: HELLO module

object that is a handle on the open file as one of its arguments and to which
messages to read and write the file can be directed. On failure, a fileError

message is returned, with a text explanation of why the file could not be opened
as one of its arguments. These messages are defined in the module FILE, which
is distributed as part of the Maude system.

The COPY-FILE module in Figure 20 illustrates the basic use of files. It
specifies a simple algorithm to copy files. In this case, the run operator takes
two arguments: the names of the file to be copied and the name of the new
file. As for the previous example, the equation for run produces a starting
configuration, containing the portal, a user object to receive messages, and an
initial message to open the original file. Once it is opened, the new file is created.
Notice the "w" argument of the openFile message. Once both files are opened,
a loop in which a line is read from the original file and written in the copy file
is initiated. This loop ends when the end of the file is reached. Both files are
then closed.

5.2.3. Socket I/O

Maude’s support for sockets works in a similar way to that for files. There
is a unique object, socketManager defined in a module SOCKET and messages
to this object can be used to create client or server TCP internet sockets. This
feature is crucial to deploy a Maude concurrent object system as a distributed
system. Consider, for example, a configuration containing 1,000 Maude objects.
They of course can be run on a single Maude interpreter, but then rewrites cor-
responding to message sends and receives are necessarily sequentialized by the
interpreter. That is, concurrency is only simulated that way as an interleaving of
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fmod MAYBE{X :: TRIV} is
sort Maybe{X} .
subsort X$Elt < Maybe{X} .
op null : -> Maybe{X} .

endfm

view Oid from TRIV to CONFIGURATION is
sort Elt to Oid .

endv

mod COPY -FILE is
inc FILE .
pr MAYBE{Oid} .

op myClass : -> Cid .
op myObj : -> Oid .
ops in:_ out:_ : Maybe{Oid} -> Attribute .
ops inFile:_ outFile:_ : String -> Attribute .

op run : String String -> Configuration .
vars Text Original Copy : String .
vars FHIn FHOut : Oid .
var Attrs : AttributeSet .

eq run(Original , Copy)
= <>

< myObj : myClass | in: null , inFile: Original ,
out: null , outFile: Copy >

openFile(fileManager , myObj , Original , "r") .
rl < myObj : myClass | in: null , outFile: Copy , Attrs >

openedFile(myObj , fileManager , FHIn)
=> < myObj : myClass | in: FHIn , outFile: Copy , Attrs >

openFile(fileManager , myObj , Copy , "w") .
rl < myObj : myClass | in: FHIn , out: null , Attrs >

openedFile(myObj , fileManager , FHOut)
=> < myObj : myClass | in: FHIn , out: FHOut , Attrs >

getLine(FHIn , myObj) .
rl < myObj : myClass | in: FHIn , out: FHOut , Attrs >

gotLine(myObj , FHIn , Text)
=> < myObj : myClass | in: FHIn , out: FHOut , Attrs >

if Text == ""
then closeFile(FHIn , myObj)

closeFile(FHOut , myObj)
else write(FHOut , myObj , Text)
fi .

rl < myObj : myClass | in: FHIn , out: FHOut , Attrs >
wrote(myObj , FHOut)

=> < myObj : myClass | in: FHIn , out: FHOut , Attrs >
getLine(FHIn , myObj) .

rl < myObj : myClass | in: FHIn , out: FHOut , Attrs >
closedFile(myObj , FHIn)
closedFile(myObj , FHOut)

=> none .
endm

Figure 20: File copy with external objects
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rewrite steps. Using sockets we can easily distribute those 1,000 Maude objects
into, say, 10 machines, each running its own Maude interpreter and holding a
configuration of, say, 100 objects. The number of objects is immaterial and is
just given for concreteness’ sake; furthermore, new objects can be created and
destroyed, and Maude objects may communicate not just with other Maude ob-
jects but also with various external object. The three key conceptual points to
keep in mid are: (1) now the configuration or “soup” of 1,000 objects and mes-
sages has been distributed into 10 such soups distributed over 10 machines and
communicating through sockets; (2) message passing communication between
Maude objects belonging to one of those 10 sub-configurations will happen as
usual by rewriting performed by the Maude interpreter for that configuration;
(3) instead, a message generated by rewriting in sub-configuration, say, num-
ber 2 but addressed to another object in sub-configuration number 8 will be:
(i) transformed into a string, (ii) sent through a socket linking those two con-
figurations, (iii) transformed back into a message in sub-configuration 8, and
(iv) delivered to the addressee object there, that will then consume it by an
appropriate rewrite rule.

For additional details on socket external objects in Maude see [24, 28].

Further Reading. The two most complete references for the semantics of
object-based systems in Maude are probably [92, 28]. How meta-objects that
can control other objects (or entire object sub-configurations) in “Russian dolls”
distributed architectures can easily be defined in Maude is explained in [110].
The specification of real-time concurrent object systems in the Real-Time Maude
extension is discussed in [113]. An interesting application using sockets to spec-
ify and deploy a mobile version of Maude called Mobile Maude is described in
[42, 49].

6. B-Unification, Variants, and E ∪ B-unification

Maude’s predecessors envisioned the inclusion of several symbolic features
which were never included in Maude until quite recently: (i) Eqlog [65] envi-
sioned an integration of order-sorted equational logic with Horn logic, providing
logical variables, constraint solving, and automated reasoning capabilities on top
of order-sorted equational logic (see Section 8.2 for an actual Eqlog interpreter);
and (ii) MaudeLog [91] envisioned an integration of order-sorted rewriting logic
with queries including logical variables. Among the many symbolic reasoning
features that can be supported by Maude, in this paper we focus on order-sorted
equational unification (this Section) and order-sorted narrowing-based symbolic
reachability analysis (Section 7). For a broader discussion of other symbolic rea-
soning methods and tools in rewriting logic and Maude see Section 9 and [101?
].

At first sight, adding symbolic reasoning capabilities to Maude might seem
like an incremental improvement; but this is not at all the case. Let us focus, for
the moment, on what it means to add equational unification. Order-sorted unifi-
cation modulo axioms first became available as a built-in feature in 2009 as part
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of the Maude 2.4 release [25], which supported any combination of order-sorted
symbols declared to be either free or associative-commutative (AC). Unification
was updated in 2011 as part of the Maude 2.6 release [41]. Built-in equational
unification was extended to allow any combination of symbols being either free,
commutative (C), associative-commutative (AC), or associative-commutative
with an identity symbol (ACU). The performance was dramatically improved,
allowing further development of other techniques in Maude. As we explain be-
low, built-in order-sorted unification has been further extended later to allow
associativity-only (A) and well as identity (U) axioms. This all means that for
axioms B including combinations of these axioms, equational unification in an
order-sorted theory (Σ, B) is supported by Maude.

The next natural but highly non-trivial step is supporting equational unifi-
cation in order-sorted theories of the form (Σ, E∪B), where the equations E ori-
ented as rules are convergent modulo such axioms B. This is highly non-trivial
because, although it is well-known that narrowing with the equations E mod-
ulo axioms B provides a complete unification semi-algorithm [74], the prospects
of obtaining a practical equational unification algorithm in this general set-
ting looked rather dim for the following reasons: (i) without an efficient E,B-
narrowing strategy the compounded combinatorial explosion of B-unification
and unrestricted E,B-narrowing would make such a semi-algorithm hopeless;
(ii) almost nothing was known about E,B-narrowing strategies for B 6= ∅; and
(iii) almost nothing was known about termination results for complete E,B-
narrowing strategies for B 6= ∅ that would make the (in general undecidable)
E ∪ B-unification semi-algorithm into a decidable unification algorithm. The
key concepts making it possible to break through these daunting obstacles have
been those of variant [34], and of folding variant narrowing and variant uni-
fication [60]. The introduction of these variant-based concepts in Maude (see
Sections 6.2–6.3 below) has led to a drastic improvement in Maude’s symbolic
reasoning capabilities: variant generation, variant-based E ∪B-unification, and
symbolic reachability based on variant-based E∪B-unification became all avail-
able for the first time. Initially, all the variant-based features were only available
in Full Maude, and for a restricted class of theories called strongly right irre-
ducible. However, all these variant-based features are now efficiently supported
in Core Maude as explained in Sections 6.2–6.3.

Order-sorted unification modulo axioms B was extended again in 2016 as
part of the Maude 2.7 release [39]. First, the built-in unification algorithm allows
any combination of symbols being free, C, AC, ACU, CU (commutativity and
identity), U (identity), Ul (left identity), and Ur (right identity). Second, variant
generation and variant-based unification were implemented as built-in features
in Maude. This built-in implementation works for any convergent theory mod-
ulo the axioms described above, both allowing very general equational theories
(beyond the strongly right irreducible ones) and boosting the performance not
only of these features but of their applications. B-unification has been recently
further extended to the associative case as part of the Maude 2.7.1 release [40].
This is a key contribution because associative unification is infinitary in general
and the development of an efficient and effective in practice associative unifica-
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tion algorithm that furthermore supports order-sorted typing and combination
with any other symbols either free or themselves combining some A and/or
C and/or U axioms, has been a highly non-trivial challenge. A key concern
in meeting this challenge has been the identification of a fairly broad class of
unification problems appearing in many practical applications for which our al-
gorithm is guaranteed to terminate with a finite and complete set of unifiers.
To deal with the unavoidable possibility that the given unification problem may
have an infinite set of unifiers, when the problem is outside the class supported
by the algorithm in a complete way, the algorithm returns a finite set of uni-
fiers with an explicit warning that such a set may be incomplete. In a good
number of applications where we have used these new associative symbolic fea-
tures of Maude, unification problems falling outside the class supported by our
algorithm in a complete way often do not even arise8 in practice.

6.1. Order-Sorted Unification Modulo Axioms B

Maude currently provides an order-sorted B-unification algorithm for all
order-sorted theories (Σ, B) such that the order-sorted signature Σ is preregular
moduloB (see [47, Footnote 2]) and the axiomsB associated to function symbols
can be any combination of: (i) iter equational axioms, which can be declared
for some unary symbols; (ii) comm (C) commutativity axioms; (iii) assoc (A)
associativity axioms; and (iv) id: identity axioms (U) as well as the left id:

left identity axioms (Ul) and the right id: right identity axioms (Ur), except
for the following combinations not currently supported: assoc id, assoc left

id, and assoc right id. However, these three remaining subcases are easily
supported by turning the respective identity axioms into oriented equations and
then using variant unification modulo the remaining axioms B (see Section 6.2).
Maude 2.7.1 provides a B-unification command of the form

unify [n] in 〈ModId 〉 : 〈Term-1 〉 =? 〈Term’-1 〉 /\ ... /\ 〈Term-k 〉 =? 〈Term’-k 〉 .

where k ≥ 1, n is an optional argument providing a bound on the number of
unifiers requested, and ModId is the module where the command takes place.
The unification infrastructure now supports the notion of incomplete unification
algorithms (e.g. for associative unification).

Let us show some examples of unification with an associative attribute, which
is the last feature available in Maude 2.7.1. See [24] for more examples of
unification modulo axioms.

Consider a very simple module where the symbol _._ is associative:

fmod UNIFICATION -A is
protecting NAT .
sort NList .
subsort Nat < NList .
op _._ : NList NList -> NList [assoc] .
vars X Y Z P Q : NList .

endfm

8The Maude-NPA protocol analyzer has already been tested with various protocols using
associative operators without encountering any incompleteness warnings (see [68]).
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Even if associative unification is infinitary (we include concrete examples below)
there are many realistic unification problems that are still finitary. The following
unification problem returns five unifiers:

Maude > unify in UNIFICATION -A : X . Y . Z =? P . Q .

Solution 1
X:NList --> #1: NList . #2: NList
Y:NList --> #3: NList
Z:NList --> #4: NList
P:NList --> #1: NList
Q:NList --> #2: NList . #3: NList . #4: NList

Solution 2
X:NList --> #1: NList
Y:NList --> #2: NList . #3: NList
Z:NList --> #4: NList
P:NList --> #1: NList . #2: NList
Q:NList --> #3: NList . #4: NList

Solution 3
X:NList --> #1: NList
Y:NList --> #2: NList
Z:NList --> #3: NList . #4: NList
P:NList --> #1: NList . #2: NList . #3: NList
Q:NList --> #4: NList

Solution 4
X:NList --> #1: NList
Y:NList --> #2: NList
Z:NList --> #3: NList
P:NList --> #1: NList . #2: NList
Q:NList --> #3: NList

Solution 5
X:NList --> #1: NList
Y:NList --> #2: NList
Z:NList --> #3: NList
P:NList --> #1: NList
Q:NList --> #2: NList . #3: NList

The above output illustrates how fresh variables, not occurring in the original
unification problem, are introduced by Maude by using the notation #N:Sort.

One possible condition for finitary associative unification (see [40] for further
details) is having linear (i.e., unrepeated) list variables, as in the example above.
On the other hand, the unification problem may not be linear, but it may be
easy to detect that there is no unifier, e.g. it is impossible to unify a list X

concatenated with itself with another list Y concatenated also with itself but
with a natural number, e.g. 1, in between.

Maude > unify in UNIFICATION -A : X . X =? Y . 1 . Y .
No unifier.

When nonlinear variables occur on both sides of an associative unification
problem, Maude always ensures termination, but sometimes raises an incom-
pleteness warning. Several cases are possible (see [40] for further details):

1. One or more cycles are detected, but they do not give rise to unifiers.

Maude > unify in UNIFICATION -A : 0 . Q =? Q . 1 .
No unifier.
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2. There is at least one cycle that produces an infinite family of most general
unifiers. In this case a warning will be issued and only the acyclic solutions
are returned.

Maude > unify in UNIFICATION -A : 0 . X =? X . 0 .
Warning: Unification modulo the theory of operator _._
has encountered an instance for which it may not be complete.

Solution 1
X:NList --> 0
Warning: Some unifiers may have been missed due to incomplete
unification algorithm(s).

Note that the unification problem 0 . X =? X . 0 has an infinite family
of most general unifiers {X 7→ 0n} for 0n being a list of n consecutive 0

elements.

3. There is at least one nonlinear variable with more than two occurrences
and Maude will use a depth bound rather than cycle detection. If the
search tree grows beyond the depth bound, the offending branches will be
pruned, and a warning will be given.

Maude > unify in UNIFICATION -A : X . X . X =? Y . Y . Z . Y .
Warning: Unification modulo the theory of operator _._
has encountered an instance for which it may not be complete.

Solution 1
X:NList --> #1: NList . #1: NList . #1: NList . #1: NList
Y:NList --> #1: NList . #1: NList . #1: NList
Z:NList --> #1: NList . #1: NList . #1: NList

Solution 2
X:NList --> #1: NList . #1: NList . #1: NList
Y:NList --> #1: NList . #1: NList
Z:NList --> #1: NList . #1: NList . #1: NList

Solution 3
X:NList --> #1: NList . #1: NList
Y:NList --> #1: NList
Z:NList --> #1: NList . #1: NList . #1: NList
Warning: Some unifiers may have been missed due to incomplete

unification algorithm(s).

See [24] for details on the meta-level commands for unification, which are ex-
tended with a new constant noUnifierIncomplete, and additional warnings
generated during associative unification.

6.2. Variants

Consider a term t in a convergent order-sorted equational theory (Σ, E ∪B)
where the equations E are assumed unconditional. Intuitively, a variant of t
[34] is the normal form u of an instance tθ of t by a substitution θ, which is
computed by simplification with E modulo B. For example, for the unsorted
signature Σ = {0, s,+} of addition in the Peano natural numbers, with E =
{x + 0 = x, x + s(y) = s(x + y)} and B = ∅, the terms x and s(x + y′) are
variants of the term x + y for the respective substitutions θ1 = {y 7→ 0} and
θ2 = {y 7→ s(y′)}. Technically, it is useful to tighten the notion of variant in
two ways [60]: (i) by viewing a variant of t as a pair (u, θ) instead of just a
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fmod EXCLUSIVE -OR is
sorts Nat NatSet . subsort Nat < NatSet .
op 0 : -> Nat .
op s : Nat -> Nat .
op mt : -> NatSet .
op _*_ : NatSet NatSet -> NatSet [assoc comm] .
vars X Y Z U V : [NatSet] .
eq [idem] : X * X = mt [variant] .
eq [idem -Coh] : X * X * Z = Z [variant] .
eq [id] : X * mt = X [variant] .

endfm

Figure 21: EXCLUSIVE-OR module

normal form u of an instance term tθ, and (ii) by requiring, without any real
loss of generality, that the substitution θ is in normal form, i.e., that for each
variable x, the term θ(x) is in normal form. Of course, some variants are more
general than others. For example, among the variants of x+ y, (x, {y 7→ 0}) is
more general than (s(x′), {x 7→ s(x′), y 7→ 0}), and (s(x + y′), {y 7→ s(y′)}) is
more general than (s(s(x′)+y′), {x 7→ s(x′), y 7→ s(y′)}). The general definition
for (Σ, E ∪B) is that a variant (u, θ) of t is more general than another variant
(v, η) of t iff there is a substitution γ such that: (i) uγ =B v, and (ii) for each
variable z in t, γ(θ(z)) =B η(z).

A convergent order-sorted theory (Σ, E∪B) is said to have the finite variant
property (FVP) [34, 60] iff each Σ-term t has a finite set of most general variants.
We can illustrate this property both by its absence and by its presence. For
example, E = {x + 0 = x, x + s(y) = s(x + y)} is not FVP, since (x + y, id),
(s(x + y1), {y 7→ s(y1)}), (s(s(x + y2)), {y 7→ s(s(y2))}), . . ., (sn(x + yn), {y 7→
sn(yn)}), . . ., are all incomparable variants of x+y. Instead, the following theory
is FVP:

Example 10. Consider the equational theory for exclusive or in module
EXCLUSIVE-OR in Figure 21. The attribute variant specifies that these equa-
tions will be used for variant generation and variant-based unification. The
owise attribute for equations should never be used in variant equations.

Given the term X * Y, we can construct several of its variants as follows:

1. The pair (s(0) ∗ s(0), {X 7→ s(0), Y 7→ s(0)}) is normalized into (mt, {X 7→
s(0), Y 7→ s(0)}) since the term s(0) * s(0) is simplified into mt;

2. The pair (s(0) ∗ U ∗ s(0), {X 7→ s(0) ∗ U, Y 7→ s(0)}) is normalized into
(U, {X 7→ s(0) ∗ U, Y 7→ s(0)}), and;

3. The pair (s(0) ∗ U ∗ s(0)∗V, {X 7→ s(0) ∗ U, Y 7→ s(0) ∗ V }) is normalized
into (U ∗ V , {X 7→ s(0) ∗ U, Y 7→ s(0) ∗ V }).

As claimed above, the module EXCLUSIVE-OR is FVP. But how can we know
this? The answer is very simple. Maude provides a variant generation command
of the form:

get variants [ n ] in 〈ModId 〉 : 〈Term 〉 .
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where n is an optional argument providing a bound on the number of variants
requested, so that if the cardinality of the set of variants is greater than the
specified bound, the variants beyond that bound are omitted; and ModId is the
module where the command takes place.

Now, as proved in [22], a convergent theory (Σ, E ∪ B) is FVP iff for each
of its function symbols f , say, f : s1 . . . sn → s, the term f(x1, . . . xn) with xi
of sort si, 1 ≤ i ≤ n, has a finite number of variants. Therefore, we can check
that the EXCLUSIVE-OR module of Example 10 has the finite variant property by
simply generating the variants for the exclusive-or symbol.

Maude > get variants in EXCLUSIVE -OR : X * Y .
Variant 1 Variant 7
[NatSet ]: #1:[ NatSet] * #2:[ NatSet] ......... [NatSet ]: %1:[ NatSet]
X --> #1:[ NatSet] X --> %1:[ NatSet]
Y --> #2:[ NatSet] Y --> mt

Note that all other symbols f in this module, except the exclusive or symbol,
are constructors and therefore have the single, trivial variant (f(x1, . . . xn), id),
where id denotes the identity substitution.

The above output illustrates a difference between unifiers returned by the
built-in unification modulo axioms and substitutions (or unifiers) returned by
variant generation or variant-based unification: there are two forms of fresh
variables, the former #n:Sort and the new %n:Sort. Note that the two forms
have different counters.

The FVP property is extremely useful. For example, we shall show in Section
6.3 that if (Σ, E∪B) is FVP and B has a finitary B-unification algorithm, then
there is also a, variant-based, finitary E ∪ B-unification algorithm. But how
common is it for a convergent theory to be FVP? Certainly not so common, but
more common than one might think. Roughly speaking, recursive equations such
as, for example, the addition equation x+s(y) = s(x+y) push a theory outside
the FVP fold. This seems quite restrictive; but one can easily overlook the power
of equational simplification modulo axioms such as associativity commutativity
(AC). Specifying a function with equations modulo AC can quite often make,
what would typically require a recursive function definition without using AC,
into a non-recursive one. For example, we can extend the above example of
Peano addition with a new sort Bool and a strict order predicate > defined
by equations: {0 > x = false, s(x) > 0 = true, s(x) > s(y) = x > y}, which
are unavoidably recursive in this representation. However, > and various other
arithmetic functions are part of an FVP theory when we define them modulo
ACU by representing the natural numbers with constants 0 and 1 and ACU
binary constructor +, so that 3 is represented as 1 + 1 + 1. Then we can define,
in a non-recursive way, arithmetic functions such as: p for the predecessor
function, max (resp. min) for the biggest (resp. smallest) of two numbers, \ for
the “monus” function, d for the symmetric difference function, > for the strict
order predicate, and ~ for the equality predicate, yielding the FVP theory in
Figure 22. We can check that it is FVP by computing the variants of its function
symbols. For example, the generation of variants for the following terms all stop
with a finite number of variants:
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fmod NAT -FVP is
protecting TRUTH -VALUE .
sorts Nat NzNat Zero .
subsorts Zero NzNat < Nat .
op 0 : -> Zero [ctor] .
op 1 : -> NzNat [ctor] .
op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0 prec 33] .
op _+_ : NzNat NzNat -> NzNat [ctor assoc comm id: 0 prec 33] .
op p : NzNat -> Nat . *** predecessor
op max : Nat Nat -> Nat [comm] .
op max : NzNat NzNat -> NzNat [comm] .
op min : Nat Nat -> Nat [comm] .
op min : NzNat NzNat -> NzNat [comm] .
op d : Nat Nat -> Nat [comm] . *** symmetric difference
op _\_ : Nat Nat -> Nat . *** monus
op _~_ : Nat Nat -> Bool [comm] . *** equality predicate
op _>_ : Nat Nat -> Bool .

vars N M : Nat .
vars N’ M’ K’ : NzNat .

eq p(N + 1) = N [variant] .
eq max(N + M, N) = N + M [variant] .
eq min(N + M, N) = N [variant] .
eq d(N + M, N) = M [variant] .
eq (N + M) \ N = M [variant] .
eq N \ (N + M) = 0 [variant] .
eq N ~ N = true [variant] .
eq (N + M’) ~ N = false [variant] .
eq M + N + 1 > N = true [variant] .
eq N > N + M = false [variant] .

endfm

Figure 22: NAT-FVP module

Maude > get variants in NAT -FVP : N \ M . --- 3 variants
Maude > get variants in NAT -FVP : N ~ M . --- 4 variants
Maude > get variants in NAT -FVP : N > M . --- 3 variants

As shown in [51], this FVP example (borrowed from [51]) can be easily
extended to an even richer FVP example INT-FVP where all the above functions
(except monus, which is superseded by actual integer difference using unary
minus and +) are extended to the integers, and an absolute value function on
integers is added.

Another interesting feature is that variant generation is incremental. In this
way we are able to support general convergent equational theories (Σ, E ∪ B)
that need be FVP, so that a term t may have an infinte number of variants.
Let us consider the Maude specification NAT-VARIANT, given in Figure 23, of our
previous functional module for natural number addition in Peano notation that
we already know does not have the finite variant property.

On the one hand, it is possible to have a term with a finite number of most
general variants although the theory is not FVP. For instance, the term X +

s(0) has the single variant s(X).

Maude > get variants in NAT -VARIANT : X + s(0) .
Variant 1
Nat: s(#1: Nat)
X --> #1:Nat

53



fmod NAT -VARIANT is
sort Nat .
op 0 : -> Nat .
op s : Nat -> Nat .
op _+_ : Nat Nat -> Nat .
vars X Y : Nat .
eq [base] : X + 0 = X [variant] .
eq [ind] : X + s(Y) = s(X + Y) [variant] .

endfm

Figure 23: NAT-VARIANT module

On the other hand, we can incrementally generate the variants of a term that we
suspect does not have a finite number of most general variants. For instance,
the term s(0) + X has an infinite number of most general variants. In such
a case, Maude can either output all the variants to the screen (and the user
can stop the process whenever she wants), or generate the first n variants by
including a bound n in the command.

Maude > get variants [10] in NAT -VARIANT : s(0) + X .
Variant 1 Variant 10
Nat: s(0) + #1:Nat ......................... Nat: s(s(s(s(s(0)))))
X --> #1:Nat X --> s(s(s(s(0))))

A third approach, particularly when we are not sure whether a term has a finite
number of variants, is to incrementally increase the bound and, if we obtain a
number of variants smaller than the bound, then we know for sure that it had
a finite number of most general variants.

6.3. Equational Narrowing, Folding Variant Narrowing, and E ∪B-unification

Variant generation relies on folding variant narrowing [60], which we infor-
mally describe in this section. Since folding variant narrowing is a narrowing
strategy (more on this below), we begin by explaining unrestricted equational
narrowing in a convergent order-sorted equational theory (Σ, E ∪ B). In or-
dinary rewriting modulo axioms B, one must choose which subterm t|p of the
subject term t and which rule l → r are going to be considered for rewriting.
Instead, in narrowing, one must choose which subterm t|p of the subject term
t, which rule l → r, and which variables of t|p may need some instantiation in
order to match l. That is, a rewriting step computes a B-matching substitution
σ such that t|p =B σ(l), whereas a narrowing step computes a B-unifier σ such
that σ(t|p) =B σ(l).

Consider the functional module NAT-VARIANT of Figure 23, the term s(0) + X

and the two equations base and ind. Narrowing will instantiate9 variable X with
0 and s(X’), respectively. The following two narrowing steps are generated:

s(0) + X ;{X 7→0},base s(0)

s(0) + X ;{X 7→s(#1:Nat)},ind s(s(0) + #1:Nat)

9New variables in Maude are introduced as #1:Nat or %1:Nat instead of X’.
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Note that, for simplicity, we show only the bindings of the unifier that affect
the input term. There are infinitely many narrowing derivations starting at the
input expression s(0) + X (at each step the reduced subterm is underlined):

1. s(0) + X ;{X7→0},base s(0)

2. s(0) + X ;{X7→s(#1:Nat)},ind s(s(0) + #1:Nat) ;{#1:Nat7→0},base s(s(0))

3. s(0) + X ;{X7→s(#1:Nat)},ind s(s(0) + #1:Nat)

;{#1:Nat7→s(#2:Nat)},ind s(s(s(0) + #2:Nat)) ;{#2:Nat7→0},base s(s(s(0)))

And some of those, infinitely many, narrowing derivations are infinite in length,
e.g. by applying rule ind infinitely many times:

s(0) + X ;{X7→s(#1:Nat)},ind s(s(0) + #1:Nat)

;{#1:Nat7→s(#2:Nat)},ind s(s(s(0) + #2:Nat))

;{#2:Nat7→s(#3:Nat)},ind s(s(s(s(0) + #3:Nat)))

. . .

A narrowing path u0 ;θ1 u1 . . . un−1 ;θn un, n ≥ 0, is denoted u0 ;∗θ
un, where θ = θ1 . . . θn is the so-called accumulated substitution obtained by
composing the substitutions θ1, . . . , θn for each step.

For a convergent order-sorted equational theory (Σ, E ∪ B) any E ∪ B-
unification problem can be reduced to a narrowing problem as follows:

1. we add a fresh new sort Truth to Σ with a constant tt;

2. for each top sort of each connected component of sorts we add a binary
predicate eq of sort Truth and add to E the equation eq(x,x) = tt,
where x has such a top sort;

3. we then reduce an E ∪ B-unification problem t =? t′ to the narrowing
reachability problem

eq(t, t′) ;∗ tt

modulo B in the theory extending (Σ, E ∪B) with these new sorts, oper-
ators, and equations, where E and the new equations are used as rewrite
rules.

That is, we search for all narrowing paths modulo B from eq(t, t′) to tt. The
accumulated substitution θ associated to each such path then gives us a E ∪B-
unifier of the equation t =? t′. However, as already pointed out, unrestricted
equational narrowing with an equational theory (Σ, E∪B) can be very wasteful
because of the compounded combinatorial explosion of potentially many B-
unifiers at each step and the existence of many, often redundant, narrowing
paths. Furthermore, only if all such narrowing paths terminate can we be sure
to have a finite, complete set of E ∪B-unifiers for a given unification problem.
But, as pointed out before, modulo axioms B such as AC, unrestricted narrowing
almost never terminates, so we are in practice condemned to a E∪B-unification
semi-algorithm. The upshot is that unrestricted narrowing modulo B is actually
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hopeless in practice: without a suitable narrowing strategy drastically restricting
the narrowing paths and able to detect when narrowing paths can be stopped
there is no hope for a practical E ∪B-unification semi-algorithm, and even less
hope for a, narrowing based, E ∪B-unification algorithm.

Folding Variant Narrowing. The folding variant narrowing strategy pro-
posed in [60] solves all these problems in one blow. It furthermore provides a
method to compute a complete set of variants for any convergent equational
theory (Σ, E∪B) such that B has a B-unification algorithm. We briefly explain
this strategy and how it is used by Maude to compute a complete set of variants
of a term, and a complete set of E ∪ B-unifiers for any convergent (Σ, E ∪ B)
having a B-unification algorithm.

Roughly speaking, given a convergent theory (Σ, E ∪B), the folding variant
narrowing strategy defines a subset of narrowing paths, so that only those in
such subset are computed. To begin with, only narrowing paths of the form
u0 ;∗θ un with un and θ normalized are considered. This exactly means that
(un, θ) is a variant of u0. In fact, it is shown in [60] that such sequences compute
a complete set of most general variants of u0. But folding variant narrowing
goes further in two ways: (i) it furthermore discards redundant narrowing paths
u0 ;∗θ un, where such a path is redundant if there is another path u0 ;∗θ′ u

′
m

such that the variant (u′m, θ
′) is more general than the variant (un, θ). We can

then “fold,” i.e., subsume, the less general path into the more general one; and
(ii) the folding variant narrowing strategy can safely stop when all new paths
thus computed in a breadth first manner can be folded into previously computed
paths. The following are the most remarkable properties about folding variant
narrowing for a convergent equational theory (Σ, E ∪B):

1. It computes a complete set of most general variants for any term t. In
general this set may be infinite and is computed incrementally by Maude.

2. This complete set of variants is finite (and the strategy terminates for any
input term t) iff (Σ, E ∪B) is FVP.

3. Extending (Σ, E ∪ B) with equality operators and the constant tt as
explained above, a complete set of most general E∪B-unifiers of t =? t′ is
obtained as the set of all substitutions θ such that (tt, θ) belongs to the
complete set of most general variants of the term eq(t, t′). In general this
set is infinite and is computed by Maude incrementally, so we only have a
semi-algorithm.

4. This variant-based E∪B-unification semi-algorithm becomes a finitary E∪
B-unification algorithm, therefore terminating for any unification problem
t =? t′, iff (Σ, E ∪B) is FVP.

Consider for instance a variant unification problem between terms X ∗Y and
U ∗ V in the EXCLUSIVE-OR theory above, which is FVP.

Maude > variant unify in EXCLUSIVE -OR : X * Y =? U * V .
--- 57 unifiers are reported

Similarly, we can call variant unification between term X + Y and 0, which has
only possible solution, in the NAT-VARIANT module above, which is not FVP.
The variant unify command terminates if we limit the number of solutions to 1.
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Maude > variant unify [1] in NAT -VARIANT : X + Y =? 0 .

Unifier #1
rewrites: 4 in 0ms cpu (0ms real) (12903 rewrites/second)
X --> 0
Y --> 0

However, it does not terminate if we limit the number of solutions to 2, since
keeps trying to generate more and more solutions without being to realize that
there is only one.

Further Reading. For order-sorted unification modulo axioms B see [104, 71,
53]. For Maude’s order-sorted associative unification algorithm and its com-
bination with other axioms B see [40]. The original paper on variants is [34].
The correctness of the method for checking that a theory is FVP as well as
several formulations of the variant notion can be found in [22]. Folding variant
narrowing and variant unification are studied in [60]. Note that if an equational
theory (Σ, E∪B) is FVP, with a B-unification algorithm, E∪B-unifiability of a
conjunction of equalities is decidable. Assuming non-empty sorts, satisfiability
in the initial algebra TΣ/E∪B of any positive (only negations and disjunctions)
quantifier-free (QF) Σ-formula is then decidable. But one can go further. Under
mild assumptions about a constructor subspecification for (Σ, E ∪B) a theory-
generic satisfiability algorithm for all QF Σ-formulas can be given (see [102, 69],
and for detailed algorithms and an implementation in Maude [124]).

7. Narrowing with Rules and Narrowing Search

When formally analyzing the properties of a rewrite theory (Σ, E ∪B,R, φ),
an important problem is ascertaining for specific patterns (i.e., terms with vari-
ables) t and t′ the following symbolic reachability problem:

∃X t −→∗ t′

with X the set of variables appearing in t and t′, which for this discussion
we may assume are a disjoint union of those in t and those in t′. That is, t
and t′ symbolically describe sets of concurrent states [[t]] and [[t′]] (namely, all
the ground substitution instances of t, resp. t′, or, more precisely, the E ∪ B-
equivalence classes associated to such ground instances). And we are asking: is
there a state in [[t]] from which we can reach a state in [[t′]] after a finite number
of rewriting steps? Solving this problem means searching for a symbolic solution
to it in a hopefully complete way (so that if a solution exists it will be found).
This has the flavor of the search command, and therefore of some kind of
model checking: for example, t′ could be a pattern describing the violation of an
invariant, and t a pattern describing a set of initial states. The main difference
(and the advantage in this case) is that with the search command we explore
the concrete states reachable from some given concrete initial state. Instead,
here we explore symbolically reachability between possibly infinite sets of states
such as [[t]] and [[t′]]. The way we do so is by narrowing t with the rewrite rules
R in the given system module (Σ, E ∪B,R, φ), modulo the equations E ∪B.
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Provided the rewrite theory (Σ, E ∪B,R, φ) is topmost (that is, all rewrites
take place at the root of a term), or, as in the case of AC rewriting of object-
oriented systems, R is “essentially topmost,” and the rules R are coherent with
E modulo B, narrowing with the rules R modulo the equations E ∪ B gives a
constructive, sound, and complete method to solve reachability problems of the
form ∃X t −→∗ t′, that is, such a problem has an affirmative answer if and only
if we can find a finite narrowing sequence modulo E∪B of the form t;∗ u such
that u and t′ are unifiable modulo E ∪ B [111]. The method is constructive,
because instantiating t with the composition of the unifiers for each step in the
narrowing sequence, plus a E ∪B-unifier for u = t′, gives us a concrete rewrite
sequence witnessing the existential formula.

Of course, narrowing with R modulo E ∪ B requires performing E ∪ B-
unification at each narrowing step. As explained in Section 6.2, E∪B-unification
can itself be performed by folding variant narrowing with the equations E mod-
ulo B, provided E is convergent modulo B. Therefore, in performing symbolic
reachability analysis in a rewrite theory (Σ, E ∪ B,R) there are two levels of
narrowing involved: (i) narrowing with R modulo E ∪ B for reachability, and
(ii) folding variant narrowing with E modulo B to compute the E ∪B-unifiers
needed for narrowing with R modulo E ∪B.

Maude provides a vu-narrow command similar to the search command
for rewriting. Specifically, vu-narrow searches in a breadth-first manner for a
substitution instance of the given goal pattern that can be reached by rewriting
from a substitution instance of the given pattern for initial states. The general
form of the command is: vu-narrow t =>� t′ . where t is the pattern of initial
states and t′ is the goal pattern. The � symbol is a place holder for the options:
� = 1 (exactly one rewrite step), � = + (one or more steps), � = * (zero or
more steps), and � = ! (terminating states). Since the narrowing search may
either never terminate and/or find an infinite number of solutions, two bounds
can be added to a vu-narrow command: one bounding the number of solutions
requested, and another bounding the depth of the rewrite steps from the initial
term t (see below).

Let us illustrate the power of performing narrowing-based reachability anal-
ysis modulo variant equations and axioms, including associativity. Consider the
specification of a generic grammar interpreter in Maude, based on [3], given
in Figure 24. We define a symbol _@_ to represent the interpreter configura-
tions, where the first underscore represents the current string (of terminal and
non-terminal symbols), and the second underscore stands for the considered
grammar. For simplificity, we provide four non-terminal symbols S, A, B, and C

for sort NSymbol and four terminal symbols 0, 1, 2, and the finalizing mark eps

(the empty string) for sort TSymbol, but a parametric specification would have
been more appropriate.
The narrowing attribute specifies that the rule will be used for narrowing-based
reachability analysis.

Note the important fact that the string concatenation symbol __ is not
just assoc, but has also eps as its identity element. This means that in each
narrowing step with the interpreter’s rule equational unification must be per-
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mod GRAMMAR is

sorts Symbol NSymbol TSymbol String Production Grammar Conf .

subsorts TSymbol NSymbol < Symbol < String .

subsort Production < Grammar .

ops 0 1 2 eps : -> TSymbol .

ops S A B C : -> NSymbol .

op _@_ : String Grammar -> Conf .

op _->_ : String String -> Production .

op __ : String String -> String [assoc id: eps] .

op mt : -> Grammar .

op _;_ : Grammar Grammar -> Grammar [assoc comm id: mt] .

vars L1 L2 U V : String .

var G : Grammar .

var N : NSymbol .

var T : TSymbol .

rl ( L1 U L2 @ (U -> V) ; G) => ( L1 V L2 @ (U -> V) ; G) [narrowing] .

endm

Figure 24: GRAMMAR module

formed modulo AU and not just modulo A. This is not directly supported by
the order-sorted B-unification of Section 6.1, but is supported by the variant-
based E ∪ B-unification of Section 6.3. That is, AU -unification is achieved by
transforming the identity property into the FVP variant equations:

eq eps U = U [variant] . eq U eps V = U V [variant] . eq V eps
= V [variant] .

The interpreter can be used in two ways thanks to narrowing: to generate
words of the given grammar, but also to parse a given string (see [20] for further
references on this topic). Generating the words of a given grammar is defined by
rewriting the configuration (S @ Γ) into (st @ Γ) where st is a string of terminal
symbols using the rules of the grammar Γ. For example, we have the following
search query associated to a context-free grammar defining the language 0n1n:

Maude > vu-narrow [4] S @ (S -> eps) ; (S -> 0 S 1)
=>! U @ (S -> eps) ; (S -> 0 S 1) .

Solution 1 Solution 2 Solution 3 Solution 4
U --> eps U --> 0 1 U --> 0 0 1 1 U --> 0 0 0 1 1 1

Parsing a string st according to a given grammar Γ is defined by narrowing
the configuration (N @ Γ) into (st @ Γ) where N is a logical variable denoting
a non-terminal symbol. For example, we have the following search query:

Maude > vu-narrow [1] N @ (S -> eps) ; (S -> 0 S 1)
=>* 0 0 1 1 @ (S -> eps) ; (S -> 0 S 1) .

Solution 1
N --> S

Moreover, we can use narrowing to answer a more complex question: What is
the missing production so that the string “0 0 1” is parsed into the non-terminal
symbol S?
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Maude > vu-narrow [1] S @ (N -> T) ; (S -> eps) ; (S -> 0 S 1)
=>* 0 0 1 @ (N -> T) ; (S -> eps) ; (S -> 0 S 1) .

Solution 1
N --> S ;
T --> 0

And we can use any grammar, e.g. a Type-0 grammar defining the language
0n1n2n.

Maude > vu-narrow [1] N @ (S -> eps) ; (S -> 0 S B C) ; (C B -> B C) ;
(0 B -> 0 1) ; (1 B -> 1 1) ; (1 C -> 1 2) ;
(2 C -> 2 2)

=>* 0 0 1 1 2 2 @ (S -> eps) ; (S -> 0 S B C) ; (C B -> B C) ;
(0 B -> 0 1) ; (1 B -> 1 1) ; (1 C -> 1 2) ;
(2 C -> 2 2) .

Solution 1
N --> S

Note that we must restrict the search in the previous narrowing-based search
commands, because narrowing does not terminate for these reachability prob-
lems. However, it is extremely important that no warning about A-unification
incompleteness is shown, ensuring that the symbolic analysis is complete mod-
ulo AU , despite associative unification being infinite for some uncommon cases.
The key reason is that string variables (L1, L2, and U) in the transition rule are
linear (L1 and L2) or under order-sorted restrictions (U).

7.1. Logic Programming as Symbolic Reachability

In this section we show how narrowing-based symbolic reachability analy-
sis can be used to provide a very simple alternative implementation of logic
programming. The key idea is that there is a simple theory transformation:

R[ ] : HornLogicTheories → RewriteTheories

so that given a logic program H we obtain an associated rewrite theory R[H]
such that any query for H can be solved by a corresponding vu-narrow search
command for R[H]. We explain and illustrate below this theory transformation.

All theories R[H] for any logic program H extend the following module
LP-SEMANTICS, that imports the LP-SYNTAX module, by adding to it the rules
of R[H]. We no longer need any auxiliary unification or renaming machinery,
since narrowing performs those automatically.

mod LP-SEMANTICS is
protecting LP -SYNTAX .

sort PredicateList .
op nil : -> PredicateList .
op _,_ : Predicate PredicateList -> PredicateList .

var PL : PredicateList .
vars X Y Z : Term .

sort Configuration .
op <_> : PredicateList -> Configuration .

For each Horn theory H, R[H] just adds to the above signature the rewrite rules
into which the Horn clauses of H are transformed. Specifically, each logic clause
P :- P1, . . . , Pn is transformed into the rewrite rule 〈P,PL〉 → 〈P1, . . . , Pn,PL〉,
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where PL is a new variable of sort PredicateList and where the leftmost
predicate P is replaced by P1, . . . , Pn.

Let us illustrate how this transformation is used by means of our running
logic programming example.

Example 11 (Symbolic Search LP-evaluation). For H the logic program
of Example 9, R[H] adds to LP-SEMANTICS the following rewrite rules:

rl < ’mother(’jane , ’mike),PL > => < PL > [narrowing] .
rl < ’mother(’sally , ’john),PL > => < PL > [narrowing] .
rl < ’father(’tom , ’sally),PL > => < PL > [narrowing] .
rl < ’father(’tom , ’erica),PL > => < PL > [narrowing] .
rl < ’father(’mike , ’john),PL > => < PL > [narrowing] .
rl < ’parent(X,Y),PL > => < ’father(X,Y),PL > [narrowing] .
rl < ’parent(X,Y),PL > => < ’mother(X,Y),PL > [narrowing] .
rl < ’sibling(X,Y),PL > => < ’parent(Z,X),’parent(Z,Y),PL > [narrowing

nonexec] .
rl < ’relative(X,Y),PL > => < ’parent(X,Z),’parent(Z,Y),PL > [narrowing

nonexec] .
rl < ’relative(X,Y),PL > => < ’sibling(X,Z),’relative(Z,Y),PL > [narrowing

nonexec] .

Note that Maude requires that rules with extra variables in the right-hand side
must be labeled with the nonexec keyword, even though the narrowing machinery
uses them to perform narrowing steps without any problem.

We can now evaluate different queries for our example logic program H by
giving corresponding vu-narrow search command for R[H] with goal < nil >.

First, whether Sally and Erica are sisters; the associated reachability graph
is finite and no bound is necessary.

Maude > vu-narrow < ’sibling(’sally ,’erica),nil > =>* < nil > .
Solution 1

Which are the siblings of Erica? Sally and herself.

Maude > vu-narrow < ’sibling(X,’erica),nil > =>* < nil > .
Solution 1
X --> ’sally

Solution 2
X --> ’erica

How many possible siblings are there? Sally and Sally, Sally and Erica, Erica
and Sally, Erica and Erica, John and John, and Mike and Mike.

Maude > vu-narrow < ’sibling(X,Y),nil > =>* < nil > .
Solution 1
X --> ’sally
Y --> ’sally

Solution 2
X --> ’sally
Y --> ’erica

Solution 3
X --> ’erica
Y --> ’sally

Solution 4
X --> ’erica
Y --> ’erica
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Solution 5
X --> ’john
Y --> ’john

Solution 6
X --> ’mike
Y --> ’mike

Solution 7
X --> ’john
Y --> ’john

Are Jane and John relatives? Yes

Maude > vu-narrow < ’relative(’jane ,’john),nil > =>* < nil > .
Solution 1

Which are the relatives of John? Tom and Jane.

Maude > vu-narrow [2] < ’relative(X,’john),nil > =>* < nil > .
Solution 1
X --> ’tom

Solution 2
X --> ’jane

As explained in Section 3.1, this last call produces an infinite narrowing search,
so we must restrict the search, asking for two solutions only.

In retrospect, the deep connection between logic programming and narrowing-
based reachability analysis is not surprising at all: both are based on unification,
and Horn clauses can easily be transformed into rules so that solving logic pro-
gramming queries just becomes narrowing search for the < nil > list of atomic
predicates. But this leaves two pending questions: (1) how can we mechanize
the H 7→ R[H] transformation; and (2) how can we obtain a programming envi-
ronment for logic programming in Maude based on narrowing? Both questions
can be easily answered by a very powerful Maude feature, namely, reflection.
In fact, Sections 8.1 and 8.2 will respectively answer questions (1) and (2) not
just for logic programming, but for the much more general functional-logic pro-
gramming language Eqlog [64].

Further Reading. Narrowing-based symbolic reachability analysis of concur-
rent systems was first studied and proved complete in [111]. To ensure that
the narrowing tree is finitely branching, and for performance reasons, we have
here assumed that in the topmost rewrite theory R = (Σ, E ∪ B,R, φ), (i) the
equations E ∪B are FVP, and (ii) the rules R are unconditional. This of course
restricts substantially the class of concurrent systems that can be symbolically
model checked by narrowing. As explained in [? ], using a semantics-preserving
theory transformation and the concept of constrained narrowing, restrictions
(i)–(ii) can be dropped and a much wider class of systems can be symbolically
model checked. Under the same just-mentioned assumptions (i)–(ii) on R it is
possible to symbolically model check not only invariants using vu-narrow, but
arbitrary LTL formulas using Maude’s LTL logical model checker [7], available
in the Maude web page.
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8. Reflection, META-LEVEL, and Meta-Interpreters

Rewriting logic is reflective [30, 31], in the sense that important aspects of
its metatheory can be represented at the object level in a consistent way. That
is, the object-level representation correctly simulates the relevant metatheoretic
aspects, just as a universal Turing machine correctly simulates any other Turing
machine, including itself. This fact is systematically used in the design and
implementation of the Maude language, making the metatheory of rewriting
logic accessible to the user in a clear, principled, and efficient way.

Rewriting logic being reflective means that there is a finitely presented
rewrite theory U in which we can represent any finitely presented rewrite theory
R (including U itself) as a term R, any terms t, t′ in R as terms t, t′, and any
pair (R, t) as a term 〈R, t〉, in such a way that we have the following equivalence:

R ` t −→∗ t′ ⇔ U ` 〈R, t〉 −→∗ 〈R, t′〉

where R ` t −→∗ t′ denotes that t rewrites into t′ using the rewrite theory R.
Since U is representable in itself, we can have an arbitrary number of levels of
reflection, giving place to what is known as a “reflective tower”:

R ` t→∗ t′ ⇔ U ` 〈R, t〉 →∗ 〈R, t′〉 ⇔ U ` 〈U , 〈R, t〉〉 →∗ 〈U , 〈R, t′〉〉 . . .

This section explains how this is achieved in Maude through its predefined
META-LEVEL and META-INTERPRETER modules. While the META-LEVEL module
provides a purely functional access to key functionality of the universal theory
U , the META-INTERPRETER module can also handle reflective object-oriented
computations that interact with the outside world. Indeed, the meta-interpreter
manager and the created meta-interpreters are external objects like internet
sockets, files, or standard I/O (see Section 5.2).

In a naive implementation of reflection, each step up the above reflective
tower comes at considerable computational cost, because simulating a single
step of rewriting at one level involves many rewriting steps one level up. It is
therefore important to have systematic ways of lowering the levels of reflective
computations as much as possible, so that a rewriting subcomputation happens
at a higher level in the tower only when this is strictly necessary. In Maude,
key functionality of the universal theory U has been efficiently implemented in
the functional module META-LEVEL. This module includes definitions of sorts
and operations for representing every element in a structured specification. For
example, terms are metarepresented as elements of a data type Term of terms;
modules are metarepresented as terms in a data type Module of modules; and
views are metarepresented as terms in a data type View of views. META-LEVEL

also contains so-called descent functions that use the equivalences in the reflec-
tive tower from right to left to lower as much as possible the level of reflective
computation for boosting performance. In many cases, the performance cost is
just a simple, linear change of data representation before and after the given
“descended” computation. In fact, virtually all Maude commands plus many
meta-level operations such as unification, matching, rule application, rewriting,
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search, and so on, are supported one level up the hierarchy as descent functions.
For example, metaReduce, metaRewrite, metaApply, and metaMatch are some
of these descent functions in META-LEVEL. Furthermore, reflective operations
like upModule, upTerm, downTerm, and other similar ones allow moving various
kinds of entities one level up or down in the reflective hierarchy.

Giving a full account of the META-LEVEL module is beyond the scope of this
paper. Full details can be found in [24, 28]. However, we give here a taste of how
reflection is supported in Maude by: (1) explaining how a term t is a rewrite
theoryR is meta-represented as a meta-term t of sort Term, (2) explaining how a
rewrite theory R (resp. an equational theory E) is meta-represented as a term R
(resp. E) of sort Module, and (3) illustrating in Section 8.1 how easy it is to define
program transformations by reflection by means of an example transformation
that mechanizes within Maude the Eqlog functional-logic language [64].

8.0.1. The META-TERM module

In the META-TERM submodule of META-LEVEL, sorts and kinds are metarepre-
sented as terms in subsorts Sort and Kind of the sort Qid of quoted identifiers.
Since characters parentheses, brackets and commas break identifiers in Maude,
they must be scaped with back quotes. For example, ’NzNat, ’Map‘{Int‘,String‘},
and ’Map‘{Int‘,Tuple‘{String‘,Set‘{Rat‘}‘}‘} are terms of sort Sort.
Similarly, ’‘[Bool‘], ’‘[List‘{Int‘}‘] and ’‘[NzNat‘,Zero‘,Nat‘] are valid
elements of the sort Kind.

A term t is meta-represented as a so-called meta-term t of the data type
Term of terms. The base cases in the metarepresentation of terms are given
by subsorts Constant and Variable of the sort Qid. Constants are quoted
identifiers that contain the constant’s name and its type separated by a ‘.’, e.g.,
’0.Nat. Similarly, variables contain their name and type separated by a ‘:’,
e.g., ’N:Nat. Appropriate selectors then extract their names and types.

A (non-constant) function symbol is meta-represented as a quoted identifier
of sort Qid. A term different from a constant or a variable is meta-represented
by applying an operator symbol to a nonempty list of meta-terms using the
constructor

op _[_] : Qid NeTermList -> Term [ctor] .

For example, the natural number term s(N) + M is meta-represented as the
meta-term ’_+_[’s[’N:Nat], ’M:Nat].

8.0.2. The META-MODULE module

In the submodule META-MODULE of META-LEVEL, which imports META-TERM,
functional and system modules, as well as functional and system theories, are
metarepresented in a syntax very similar to their original user syntax. Given
meta-representations of sorts, operations, equations, membership axioms, and
rules, modules and theories are meta-represented as terms of sort Module (and
corresponding subsorts, like FModule for functional modules and SModule for
system modules). For example, a system module is meta-represented using the
following constructor:
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op mod_is_sorts_._____endm : Header ImportList SortSet
SubsortDeclSet OpDeclSet MembAxSet EquationSet RuleSet
-> SModule [ctor gather (& & & & & & & &)] .

Sort Header can take as values just an identifier in the case of non-parameterized
modules or an identifier together with a list of parameter declarations in the
case of a parameterized module. Let us get a taste for how each of the differ-
ent elements in modules and theories are meta-represented by looking at how
equations are meta-represented.

sorts Equation EquationSet .
subsort Equation < EquationSet .
op eq_=_[_]. : Term Term AttrSet -> Equation [ctor] .
op none : -> EquationSet [ctor] .
op __ : EquationSet EquationSet -> EquationSet [ctor assoc comm id: none] .

Similar definitions allow us to represent the rest of the components of mod-
ules. To get a feeling about the similarity between the object-level and meta-
level notations, let us consider the metarepresentation of the module on the left
as the term (called a meta-module) displayed on the right:

fmod NAT is fmod ’NAT is
pr BOOL . protecting ’BOOL .
sorts Zero Nat . sorts ’Zero ; ’Nat .
subsort Zero < Nat . subsort ’Zero < ’Nat .
op 0 : -> Zero [ctor] . op ’0 : nil -> ’Zero [ctor] .
op s : Nat -> Nat [ctor] . op ’s : ’Nat -> ’Nat [ctor] .
op _+_ : Nat Nat -> Nat [comm] . op ’_+_ : ’Nat ’Nat -> ’Nat [comm] .
vars N M : Nat . --- no variable declarations
--- no mbs none
eq 0 + N = N . eq ’_+_[’0.Nat , ’N:Nat] = ’N:Nat .
eq s(N) + M = s(N + M) . eq ’_+_[’s[’N:Nat], ’M:Nat]

= ’s[’_+_[’N:Nat , ’M:Nat]] .
endfm endfm

To prepare the ground for our program transformation example in Section
8.1, just think for a moment about what a program transformation is in its
simplest possible form, and why reflection should provide a powerful way of
meta-programming such transformations. In Maude, a program is a rewrite
theory R. Therefore, the simplest kind of program transformation we can think
of is some kind of function, say, Tr , that maps any rewrite theory R to its
transformed theory Tr(R). But where does this function exits? In a strato-
sphere called the meta-level of rewriting logic. What reflection does is to bring
such a stratosphere down to earth, namely, down to the META-LEVEL module.
Of course, for the program transformation Tr to be of any use at all, it should
be effective, that is, it should be a computable function. But we know by the
meta-theorem of Bergstra and Tucker [13] that any computable function can be
defined by a convergent, finite set of equations. Since by reflection we already
have an algebraic data type of rewrite theories, namely, the data type defined by
the META-MODULE functional module, this all means that we can meta-program
any program transformation Tr of our choice as an equationally-defined function

op Tr : SModule -> Smodule .

in a functional module extending META-MODULE. Let us see all this for Eqlog!
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8.1. A Program Transformation for Eqlog

Program transformation is one of the applications of meta-programming.
The following example illustrates the power of program transformations in a
way that generalizes the program transformation H 7→ R[H] from Horn clause
theories to rewrite theories defined in Section 7.1 and illustrated in Example 11.

The generalization has to do with considering a much more general class of
Horn theories, namely, order-sorted Horn theories with equality, which are the
theories on which the Eqlog [64] functional-logic language is based. Such theories
have the form: ((Σ,Π), E ∪ B ∪ H), where (Σ, E ∪ B) is a convergent order-
sorted equational theory that, to make sure E ∪ B-unification terminates, we
will assume FVP, and H is a collection of Horn clauses defined on the signature
Π of predicate symbols. We could easily define in Maude a data type whose
terms are exactly (reflective versions of) such order-sorted Horn theories with
equality, and then we could define by reflection the transformation mapping
any such theory to a corresponding meta-module term in Maude. But there is
a shortcut that we will take to ease the presentation.

The shortcut has to do with the fact that each order-sorted Horn theory with
equality ((Σ,Π), E ∪B ∪H) can be transformed into a semantically equivalent
order-sorted equational theory of the form (Σ ∪ Π, E ∪ B ∪ EH), where the
predicates Π have been transformed into additional function symbols, and the
Horn clauses H into additional conditional equations EH by: (i) adding a fresh
new sort Pred of predicates to Σ having a constant > denoting “truth,” (ii)
turning each predicate p in Π having argument sorts s1 . . . sn into a function
symbol p : s1 . . . sn → Pred , and (iii) transforming each Horn clause p(u) ⇐
p1(u1) ∧ . . . ∧ pn(un) into the conditional equation p(u) = > ⇐ p1(u1) = > ∧
. . . ∧ pn(un) = >. For simplicity we will assume that each Eqlog theory T has
been specified as an equational theory of the form T = (Σ ∪ Π, E ∪ B ∪ EH).
This has the advantage of allowing us to express T inside Maude as a functional
module, so that our desired transformation T 7→ R[T ] turning T into a rewrite
theory can be defined as a meta-level function:

op R[_] : FModule -> SModule .

To illustrate these ideas, let us consider an Eqlog program that extends that
of Example 9 by adding age information for the relatives in the example and
an order predicate to compare ages. In its functional version such an Eqlog
program can be specified as the functional module in Figure 25.

The transformation T 7→ R[T ] is in essence very simple. It has the form
R : (Σ ∪ Π, E ∪ B ∪ EH) 7→ (Σ ∪ Π ∪ Ω, E ∪ B,R[H] ∪ Req), where Ω adds
new sorts PredList and Configuration and operator declarations < > of sort
Configuration and nil and , of sort PredList just as we did in the H 7→
R[H] transformation of Section 7.1, and the Horn clauses H (here expressed as
conditional equations EH but this is immaterial) are transformed into rewrite
rules exactly as in the H 7→ R[H] transformation. Furthermore, for each con-
nected component, [s], other than that of Pred, a binary equality predicate
== : [s] [s] -> Pred is added to Ω, and a rule defining this predicate for
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fmod EXAMPLE is
protecting TRUTH -VALUE .
sorts Person Nat Pred .

ops jane tom sally mike john erica : -> Person [ctor] .

op T : -> Pred [ctor] . *** true
op mother : Person Person -> Pred [ctor] .
op father : Person Person -> Pred [ctor] .
op sibling : Person Person -> Pred [ctor] .
op parent : Person Person -> Pred [ctor] .
op relative : Person Person -> Pred [ctor] .

vars X1 X2 X3 : Person .

*** Horn Clauses as conditional equations:
eq mother(jane , mike) = T .
eq mother(sally , john) = T .
eq father(tom , sally) = T .
eq father(tom , erica) = T .
eq father(mike , john) = T .
ceq sibling(X1 , X2) = T

if parent(X3, X1) = T /\ parent(X3 , X2) = T [nonexec] .
ceq parent(X1 , X2) = T if father(X1, X2) = T .
ceq parent(X1 , X2) = T if mother(X1, X2) = T .
ceq relative(X1, X2) = T

if parent(X1, X3) = T /\ parent(X3 , X2) = T [nonexec] .
ceq relative(X1, X2) = T

if sibling(X1, X3) = T /\ relative(X3, X2) = T [nonexec] .

ops 0 1 : -> Nat [ctor] .
op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .
op _>_ : Nat Nat -> Bool .
op _>=_ : Nat Nat -> Bool .

vars n m k : Nat .

eq n + m + 1 > n = true [variant] .
eq n > n + m = false [variant] .

eq n + m >= n = true [variant] .
eq n >= n + m + 1 = false [variant] .

op age : Person -> Nat .
eq age(tom)

= 1 + 1 + ... + 1 [variant] . *** 50
eq age(sally)

= 1 + 1 + ... + 1 [variant] . *** 30
eq age(john)

= 1 + 1 + ... + 1 [variant] . *** 10
eq age(jane)

= 1 + 1 + ... + 1 [variant] . *** 52
eq age(mike)

= 1 + 1 + ... + 1 [variant] . *** 32
eq age(erica)
= 1 + 1 + 1 ... + 1 [variant] . *** 28

endfm

Figure 25: Eqlog program extending the relatives program in Example 9 (notice the ellipses)
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equalities of that kind: rl < X:[s] == X:[s],PL > => < PL > is added to the
set of rules (these are the rules denoted Req).

Given self-explanatory auxiliary functions addOps, setName, setEqs, setRls,
getSorts, getEqs, getRls, and getName, the following equation implements the
T 7→ R[T ] transformation:

op eqlogTransform : FModule -> SModule .
eq eqlogTransform(M)

= addSorts(’PredList ; ’Configuration ,
addOps(

op ’nil : nil -> ’PredList [none] .
op ’_‘,_ : ’Pred ’PredList -> ’PredList [none] .
op ’<_> : ’PredList -> ’Configuration [none] .
mkEqOps(getSorts(M)),
transformEqs(

getEqs(M),
setEqs(

setRls(setName(M, qid("R[" + string(getName(M)) + "]")),
mkEqRls(getSorts(M))),

none),
M))) .

Auxiliary functions mkEqOps and mkEqRls create, given a set of sorts, the oper-
ator declarations and equations for == as explained above.

op mkEqOps : SortSet -> OpDeclSet .
eq mkEqOps(S ; SS)

= if S == ’Pred
then none
else op ’_==_ : kind(S) kind(S) -> ’Pred [none] .
fi
mkEqOps(SS) .

eq mkEqOps(none) = none .

op mkEqRls : SortSet -> RuleSet .
eq mkEqRls(S ; SS)

= if S == ’Pred
then none
else rl ’<_>[’_‘,_[’_==_[qid("X:" + string(kind(S))),

qid("X:" + string(kind(S)))], ’PL:PredList ]]
=> ’<_>[’PL:PredList] [narrowing] .

fi
mkEqRls(SS) .

eq mkEqRls(none) = none .

The operation transformEqs transforms equations of sort Pred into the corre-
sponding rules:

op transformEqs : EquationSet Module Module -> Module .
op transformCd : EqCondition -> Term .
ceq transformEqs(eq T = ’T.Pred [none] . Eqs , M, M’)

= transformEqs(Eqs ,
addRls(rl ’<_>[’_‘,_[T, ’PL:PredList ]]

=> ’<_>[’PL:PredList] [narrowing] ., M),
M’)

if leastSort(M’, T) = ’Pred .
ceq transformEqs(ceq T = ’T.Pred if Cd [Atts] . Eqs , M, M’)

= transformEqs(
Eqs ,
addRls(rl ’<_>[’_‘,_[T, ’PL:PredList ]]

=> ’<_>[ transformCd(Cd)] [Atts narrowing] ., M),
M’)

if leastSort(M’, T) = ’Pred .
eq transformEqs(Eqs , M, M’) = addEqs(Eqs , M) [owise] .

ceq transformCd(T = ’T.Pred /\ Cd)
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= ’_‘,_[T, transformCd(Cd)]
if Cd =/= nil .

eq transformCd(T = ’T.Pred) = ’_‘,_[T, ’PL:PredList] .

Notice that rules are added to the module as they are generated. The second
module does not change, it is used just for checking sorts.

Example 12 (Eqlog Example as Narrowing Search). Consider the func-
tional module EXAMPLE in Figure 25, which is the already-discussed Eqlog pro-
gram extending the relatives logic program of Example 9 with an age operation
and order predicates to compare natural numbers. Its transformed system meta-
module eqlogTransform(EXAMPLE) obtained using the eqlogTransform meta-
level function has (meta-represented) unconditional rewrite rules such as the
following ones:

rl < mother(jane , mike), PL:PredList >
=> < PL:PredList > .

rl < sibling(X1,X2), PL:PredList >
=> < PL:PredList , parent(X3, X1), parent(X3, X2) > [nonexec] .

The system meta-module eqlogTransform(EXAMPLE) can then be used at the
metalevel to perform Eqlog-based symbolic computation for this example using
narrowing search10. For example, we can then use the metaNarrowingSearch

operation to find persons with a father and a mother in the transformed module:

red metaNarrowingSearch(
eqlogTransform(upModule(’EXAMPLE , true)),
’<_>[’_‘,_[’father[’X:Person , ’Y:Person],

’_‘,_[’mother[’Z:Person , ’Y:Person], ’nil.PredList ]]],
’<_>[’nil.PredList],
’*,
unbounded ,
’none , ---- vu -narrow folding strategy
0) .

result NarrowingSearchResult: {
’<_>[’nil.PredList],
’Configuration ,
(’X:Person <- ’mike.Person ;
’Y:Person <- ’john.Person ;
’Z:Person <- ’sally.Person),

’%,
(none).Substitution ,
’#

}

Or to find out that there are no fathers younger than their children:

red metaNarrowingSearch(
eqlogTransform(upModule(’EXAMPLE , true)),
’<_>[’_‘,_[’father[’X:Person , ’Y:Person],

’_‘,_[’_==_[’_>_[’age[’Y:Person], ’age[’X:Person]], ’true.
Bool],
’nil.PredList ]]],

’<_>[’nil.PredList],
’*,
unbounded ,

10An alternative way of representing Eqlog programs can be found in [56] using system
modules and narrowing search and also in [57] using functional modules and folding variant
narrowing.
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’none , ---- vu -narrow folding strategy
0) .

result NarrowingSearchResult ?: (failure).NarrowingSearchResult?

8.2. An Eqlog Execution Environment

Maude provides meta-programming facilities for the generation of execution
environments for a wide variety of languages and logics. We explain here how
these facilities may be used to develop a user-friendly notation for the intro-
duction of Eqlog programs. We have extended Full Maude with a new module
expression to be able to use Eqlog programs as functional modules as in Exam-
ple 9 and corresponding commands to execute queries on them.

Full Maude [28] is an extension of Maude written in Maude itself using its
reflective capabilities. It was developed as a place in which to experiment with
new features, and provide facilities not yet available in the core implementa-
tion. Indeed, many of the features now available in Core Maude, like strategies,
unification, variants, narrowing, parameterized modules, views, and module ex-
pressions like summation, renaming and instantiation, were available in Full
Maude long before they were available in Maude (see, e.g., [44, 38]). This same
setting represents a perfect place to add new features with which to experiment
or develop new prototypes.

The interested reader may find at http://maude.lcc.uma.es/maude28 a
module extending Full Maude that provides a new module expression R[ ] to
transform an Eqlog program T already entered into Maude as a functional
module into the rewrite theory R[T ] defined in Section 8.1, and a command
solve[ ] . to get the first n solutions to a query for such an Eqlog program.
The extension has been performed as in many previous cases. Please, see guide-
lines in [48] or [28, 24].

Once the module expression is available, it can be used as any other module
expression in Maude, in importation declarations in other modules or in com-
mands. For example, given the EXAMPLE module one can select the generated
module with

(select R[EXAMPLE] .)

And then, at the object level, one can write commands of the form:

(solve [n] A1,...,An .)

to ask for the first n solutions to the query A1,...,An where the Ai are pred-
icate atoms, including equality predicates of the form t == t′.

We can now solve the queries in Example 12 in a more user-friendly syntax:

(solve father(X:Person , Y:Person), mother(Z:Person , Y:Person), nil .)

Solution 1
state: < nil >
accumulated substitution:
X:Person --> mike ;
Y:Person --> john ;
Z:Person --> sally
variant unifier: empty substitution

No more solutions.
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(solve father(X:Person , Y:Person),
age(Y:Person) > age(X:Person) == true ,
nil .)

No more solutions.

8.3. Meta-interpreters

The META-LEVEL module is purely functional. This is because all its descent
functions are deterministic, even though they may manipulate intrinsically non-
deterministic entities such as rewrite theories. For example, the metaSearch

descent funtion with a bound of, say, 3, is entirely deterministic, since given the
meta-representations R of the desired system module and t of the initial term
plus the bound 3, the result yielded by search for R, t and 3 at the object level,
and therefore by metaSearch at the meta-level, is uniquely determined.

Although META-LEVEL is very powerful, its purely functional nature means
that it has no notion of state. Therefore reflective applications where user
interaction in a state-changing manner is essential require using META-LEVEL in
the context of additional features supporting such interaction. Until recently,
all such reflective interactions were mediated by the built-in LOOP-MODE module
[28]: a simple read-eval-print loop where a Maude user can interact from the
terminal with a Maude module M already stored in Maude through an object
(the state of LOOP-MODE) consisting of a 3-tuple that holds a Maude term t in
module M —thought of as the current “internal state” of the loop— together
with input and output buffers. The user interactions do change the state of that
3-tuple by consuming user input, producing output and possibly changing the
internal state t to a new state t′ according to the user-given rewrite rules defining
the desired interaction. For example, Full Maude, the Eqlog extension of it
presented in Section 8.2, and many other interactive Maude tools use suitable
extensions of META-LEVEL and LOOP-MODE to support user interaction. This is
adequate for many purposes, but limits the type of interactions to simple real-
eval-print ones. Much more flexible kinds of reflective interactions are possible
by means of Maude’s new meta-interpreters feature, in which Maude interpreters
are encapsulated as external objects and can reflectively interact with both other
Maude interpreters and with various other external objects, including the user.

Conceptually a meta-interpreter is an external object that is an independent
Maude interpreter, complete with module and view databases, which sends and
receives messages. The module META-INTERPRETER in Maude’s standard prelude
contains command and reply messages that cover almost the entirety of the
Maude interpreter. For example, it can be instructed to insert or show modules
and views, or carry out computations in a named module. As response, the
meta-interpreter replies with messages acknowledging operations carried out or
containing results. Meta-interpreters can be created and destroyed as needed,
and because a meta-interpreter is a complete Maude interpreter, it can host
meta-interpreters itself and so on in a tower of reflection. Furthermore the
original META-LEVEL functional module can itself be used from inside a meta-
interpreter.

71



mod RUSSIAN -DOLLS is
extending META -INTERPRETER .

op me : -> Oid .
op User : -> Cid .
op depth:_ : Nat -> Attribute .
op computation:_ : Term -> Attribute .

vars X Y Z : Oid .
var AS : AttributeSet .
var N : Nat .
var T : Term .

op newMetaState : Nat Term -> Term .
eq newMetaState (0, T) = T .
eq newMetaState(s N, T)

= upTerm(
<>
< me : User | depth: N, computation: T >
createInterpreter(interpreterManager , me , none)) .

rl < X : User | AS >
createdInterpreter(X, Y, Z)

=> < X : User | AS >
insertModule(Z, X, upModule(’RUSSIAN -DOLLS , true)) .

rl < X : User | depth: N, computation: T, AS >
insertedModule(X, Y)

=> < X : User | AS >
erewriteTerm(Y, X, unbounded , 1, ’RUSSIAN -DOLLS , newMetaState(N, T)) .

endm

Figure 26: Nested meta-interpreter example

The meta-representation of terms, modules and views is shared with the
META-LEVEL functional module. The API to meta-interpreters defined in the
META-INTERPRETER module includes several sorts and constructors, a built-in
object identifier interpreterManager and a large collection of command and
response messages. The interpreterManager object identifier refers to a special
external object that is responsible for creating new meta-interpreters in the
current execution context. Such meta-interpreters have object identifiers of the
form interpreter(n) for natural number n.

Example 13. Let us illustrate the flexibility and generality of meta-intepreters
with a short example. The example, which we call RUSSIAN-DOLLS after the
Russian nesting dolls, is shown in Figure 26. It performs a computation in a
meta-interpreter that itself exists in a tower of meta-interpreters nested to a
user-definable depth and requires only two equations and two rules.

The visible state of the computation resides in a Maude object of identifier me
and class User. The object holds two values in respective attributes: the depth
of the meta-interpreter, which is recorded as a Nat, with 0 as the top level, and
the computation to perform, which is recorded as a Term.

The operator newMetaState takes a depth and a meta-term to evaluate.
If the depth is zero, then it simply returns the meta-term as the new meta-
state. Otherwise a new configuration is created, consisting of a portal (needed
for rewriting with external objects to locate where messages exchanged with ex-
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ternal objects leave and enter the configuration), the user-visible object hold-
ing the decremented depth and computation, and a message directed at the
interpreterManager external object, requesting the creation of a new meta-
interpreter, and this configuration is lifted to the metalevel using the built-in
upTerm operator imported from the functional metalevel.

The first rule of the module handles the createdInterpreter message from
interpreterManager, which carries the object identifier of the newly created
meta-interpreter. It uses upModule to lift its own module, RUSSIAN-DOLLS, to
the metalevel and sends a request to insert this meta-module into the new meta-
interpreter. The second rule handles the insertedModule message from the new
meta-interpreter. It calls the newMetaState operator to create a new meta-state
and then sends a request to the new meta-interpreter to perform an unbounded
number of rewrites, with external object support and one rewrite per location
per traversal in the metalevel copy of the RUSSIAN-DOLLS module that was just
inserted.

We start the computation with an erewrite command on a configuration
that consists of a portal, a user object, and a createInterpreter message:

Maude > erewrite
<>
< me : User | depth: 0,

computation: (’_+_[’s_^2[’0. Zero], ’s_^2[’0. Zero ]]) >
createInterpreter(interpreterManager , me, none) .

result Configuration:
<>
< me : User | none >
erewroteTerm(me, interpreter (0), 1, ’s_^4[ ’0. Zero], ’NzNat)

With depth 0, this results in the evaluation of the meta-representation of 2 + 2
directly in a meta-interpreter, with no nesting. Passing a depth of 1 results in
the evaluation instead being done in a nested meta-interpreter.

erewrite
<>
< me : User | depth: 1,

computation: (’_+_[’s_^2[’0. Zero],’s_^2[’0. Zero ]]) >
createInterpreter(interpreterManager , me, none) .

result Configuration:
<>
< me : User | none >
erewroteTerm(me, interpreter (0), 5,

’__[’<>.Portal ,
’<_:_|_>[’me.Oid ,’User.Cid ,’none.AttributeSet],
’erewroteTerm[’me.Oid ,’interpreter [’0.Zero],’s_[’0.Zero],

’_‘[_‘][’’s_^4.Sort ,’’0.Zero.Constant],’’NzNat.Sort]], ’
Configuration)

Notice here that the top level reply message erewroteTerm(...) contains a re-
sult that is a meta-configuration, which contains the reply ’erewroteTerm[...]

meta-message from the inner meta-interpreter.

Further Reading. As already mentioned, full details can be found in [24, 28].
The most complete treatment of reflection in both rewriting logic and member-
ship equational logic, including proofs of correctness of the meta-representations
in the reflective tower, can be found in [31]. About program transformations we
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only scratched the surface. Inside Maude they are generalized to module opera-
tions that make Maude user-extensible with new module composition features
[46]. Outside Maude —or transforming programs in other logics to programs in
Maude, or conversely— what “program transformations” are is maps between
logics in the sense of [89] that can be implemented inside Maude when we use
it as a meta-logical framework (see [98] and references there). Such meta-level
mappings are very useful to use Maude as a formal meta-tool to build formal
tools for many other logics (see again [98]).

9. Tools and Applications

As its title suggests, this paper has a twofold purpose. On the one hand,
it tries to give a gentle introduction to Maude’s declarative programming style
without assuming prior familiarity with the language. On the other hand, it
provides, for the first time, a unified account of the most recent Maude features
supporting symbolic computation as well as other important new features. To
keep the paper within reasonable size bounds, other important topics already
well covered in the Maude book [28] had to be omitted or be mentioned only in
passing. In particular, two important topics have not been fully explained: (i)
model checking has only been treated in the form of search-based (with either
the standard search command or with narrowing-based symbolic search) reach-
ability analysis; and Full Maude has only made a cameo appearance through
its extension into an Eqlog interpreter in Section 8.2. For more details on Full
Maude, including its advanced features for object-based programming already
mentioned in Section 5, we refer the reader to the detailed account in [28], and
for how to build a wide range of formal tools as Full Maude extensions (as we
did in this paper for Eqlog) to the quite useful methodological paper [48].

For model checking, the first important distinction to be made is between
explicit-state model checking, where the search space of all concrete states of a
system are explored, and symbolic model checking, where sets of states, as op-
posed to individual concrete states, are represented and explored symbolically.
Maude supports both kinds of model checking by model checkers directly sup-
ported by Core Maude and by additional model checkers built on top of Maude.
We first discuss Maude’s support for explicit state model checking. Discussion
of symbolic model checking is postponed until we discuss symbolic computation
later in Section 9.1.

Explicit-State Model Checking in Maude. The most basic form of explicit-
state model checking has already been illustrated in this paper, since it is sup-
ported by the search command. Note that, as further explained and illustrated
with examples in [28], search can be used to both verify invariants or to find
violations of invariants in the following sense. Suppose that an invariant has
been specified as a boolean-valued predicate, say p, on states of sort State, and
we wish to verify that p holds in every state reachable from an initial state init.
Then we can search for a violation of p by giving the search command:

search init =>* S:State s.t. p(S:State) =/= true .
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If the invariant p fails to hold, it will do so for some finite sequence of transitions
from init, and this will be uncovered by the above search command since all
reachable sates are explored in a breadth first manner. If, instead, the invariant
p does hold, two things can happen: (i) if the set of states reachable from init

is finite, the search command will report failure to find a violation of p and
therefore p holds; but (ii) if there is an infinite number of states reachable from
init, search will never terminate. Two options are then available: (ii)-(a) we
can instead perform bounded model checking of p by specifying a depth bound
for the search command; or (ii)-(b), as explained in [28], it may be possible to
define an equational abstraction [106] of the given system module by identifying
states by additional equations, so that the system becomes finite-state and the
invariant p can be verified.

Under the assumption that the set of states reachable from an initial state
init is finite, Core Maude also supports explicit-state model checking verifi-
cation of any properties in linear time temporal logic (LTL) through its LTL
model checker. We refer to [28] for a detailed account of LTL model checking in
Maude, including the use of equational abstractions [106] to abstract an infinite-
state system into a finite-state one that can actually be model checked for LTL
properties. But this is not all. Some important system properties go beyond
LTL ones. We did mention in passing properties of this kind when discussing
the fault-tolerant communication protocol of Section 5, namely, that only under
suitable object and message fairness assumptions could successful termination
of the protocol be guaranteed. The most satisfactory way to express these ad-
vance properties and effectively model check them is by specifying them in the
linear time temporal logic of rewriting (LTLR) [96] and verifying them using
Maude’s LTLR model checker [10], which is available in the Maude web page.

9.1. Symbolic Reasoning: Tools and Applications

This paper has placed special emphasis on Maude’s novel features supporting
symbolic computation, including: (i) B-unification and E ∪ B-unification; (ii)
variants and equational narrowing with the folding variant narrowing strategy;
and (iii) narrowing-based symbolic reachability analysis for topmost rewrite
theories of the formR = (Σ, E∪B,R), where: (a) (Σ, E∪B) is FVP, and (b) the
rules R are unconditional. The best way to understand features (i)–(iii) is to see
them as basic building blocks on top of which a wide range of symbolic reasoning
tools and applications can be built. What follows is an attempt to provide an
overview of the tools and applications that support symbolic reasoning on top
of features (i)–(iii). More detailed accounts can be found in [101? ].

Symbolic Model Checking. In complete analogy with the explicit-state
case, the simplest kind of symbolic model checking supported by Maude is the
narrowing-based symbolic reachability analysis provided by feature (iii) above.
As in the explicit-state case, such symbolic reachability analysis can be used to
verify invariants. The simplest (but not the only: see below) way to specify in-
variants is by providing a finite set {u1, . . . , un} of constructor patterns, so that
the invariant’s complement is the set of ground instances of any of those pat-
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terns. As in the explicit-state case, if an invariant fails to hold, narrowing-based
symbolic reachability analysis is guaranteed to detect the invariant’s violation
at some finite depth. If, instead, the invariant does hold two things can happen:
(i) if the narrowing-based search terminates without finding a violation, the
invariant holds; otherwise, several possibilities remain open: (ii)-(a) perform
bounded symbolic model checking by fixing a depth bound; (ii)-(b) use state
space reduction techniques to hopefully make the number of reachable symbolic
states finite (for example, Maude’s fvu-narrow command, folds less general
states into more general ones for this purpose); and (ii)-(c) use an equational
abstraction, where the underlying equational theory remains FVP, in conjunc-
tion with (ii)-(b) to make the space of symbolic reachable states finite. In cases
(ii)-(b) and (ii)-(c) full verification of the given invariant can be achieved. An im-
portant domain-specific symbolic model checker also based on narrowing-based
symbolic reachability analysis is the Maude-NPA tool for symbolic verification
of cryptographic protocols [58]. The point is that a cryptographic protocol P
can be specified in Maude as a topmost rewrite theory P = (Σ, E∪B,R) whose
FVP equational part (Σ, E ∪B) specifies the algebraic properties of the proto-
col’s cryptographic functions. As before, security violations (invariant failures)
can be specified by constructor patterns {u1, . . . , un} here called attack states.
The strongest points of the Maude-NPA tool are perhaps that: (1) it has very
advanced state space reduction techniques [59], so that a finite symbolic state
space is actually reached in many cases, thus achieving full verification; and
(iii) because of its support for reasoning modulo an FVP theory (Σ, E ∪ B),
Maude-NPA is arguably the most general tool currently available for verifying
cryptographic protocols modulo their algebraic properties.

In complete analogy with the explicit-state model checking case, the above
narrowing-based symbolic model checking techniques extend to similar narrowing-
based symbolic LTL model checking techniques [7] supported by Maude’s logical
LTL model checker available in the Maude web page. This symbolic technique
has been further extended to narrowing-based symbolic LTLR model checking in
[8]. Furthermore, symbolic methods can also used to define predicate abstrac-
tions that can effectively model check LTL properties [9].

Term Pattern Predicates. If we take to heart the above-mentioned idea of
describing a possibly infinite set of states by a finite set {u1, . . . , un} of construc-
tor patterns, what we can arrive at is a series of increasingly more expressive
languages for defining state predicates based on patterns. In such languages,
logical operations can be effectively computed by symbolic techniques in a way
completely similar to how operations on finite automata can effectively perform
Boolean operations on their associated regular languages. In fact, if we have a
constructor subspecification (Ω, EΩ ∪BΩ) ⊆ (Σ, E ∪B) such that (Ω, EΩ ∪BΩ)
is FVP, then pattern conjuction can be effectively computed by variable-disjoint
EΩ∪BΩ-variant unification, and disjunction is just union of patterns. The good
properties for the free case EΩ∪BΩ = ∅, including also negation for order-sorted
linear patterns, have been investigated in [109]. But we can go further by con-
sidering more expressive constrained patterns of the form u | ϕ, where u is an
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Ω-term and ϕ is a QF Σ-formula, so that u | ϕ specifies the ground instances
of u for which ϕ holds. State predicates having such constrained patterns u | ϕ
as atomic predicates and closed under conjunction and disjunction in an effec-
tively, symbolically computable manner have been studied in [125? ]. Such a
language of pattern predicates is very useful to specify sets of states both in
reachability logic (see below), and in the constrained style of narrowing-based
reachability analysis defined in [? ]. Another technique where pattern predi-
cates are extremely useful is in rewriting modulo SMT [115], where sets of states
are represented by pattern predicates u | ϕ where satisfiability of ϕ is decidable
by an SMT solver. Roughly speaking, rewriting modulo SMT is a symbolic
reachability analysis technique closely related to narrowing-based reachability
analysis and even more so to the narrowing-based constrained reachability anal-
ysis proposed in [? ]. The main differences with these two other approaches are:
(i) instead of narrowing modulo an FVP theory E∪B, we perform B-matching;
(ii) the rules R can be conditional, but their conditions are SMT-solvable formu-
las; and (iii) after rewriting a symbolic state u | ϕ we accumulate SMT solvable
constraints coming from a rule’s condition in the new symbolic state and check
for their satisfiability of the new constraint.

Variant Satisfiability. As already pointed out at the end of Section 6.2, under
mild conditions on the constructors of an FVP theory (Σ, E ∪B), satisfiability
of QF formulas in the initial algebra TΣ/E∪B is decidable by theory-generic
variant satisfiability algorithms [102, 69]. This is important, since the initial
algebra TΣ/E∪B is the initial model of the functional module specified by the
theory (Σ, E ∪ B), so that satisfiability of QF formulas in many user-defined
algebraic data types can be decided this way. For example, satisfiability of QF
formulas in the initial algebras of the NAT-FVP and INT-FVP examples discussed
in Section 6.2 is decidable by this method, and many more examples, including
parameterized data types, are given in [102, 69]. For details on the algorithms
and implementation see [124]. One tool where these satisfiability results and
algorithms are routinely used is in the reachability logic theorem prover (more
on this below).

Generalization, Homeomorphic Embedding, and Partial Evaluation.
Generalization is the dual of unification. When B-unifying terms t and t′ we
look for a term u and substitution σ such that tσ =B u =B t′σ. Instead,
when we want to B-generalize two term patterns t and t′ we look for a term
g and substitutions σ, τ of which they are instances up to B-equality, i.e., such
that gσ =B t and gτ =B t′. In unification we look for most general unifiers
(mgu’s). Instead, in generalization we look for least general generalizers (lgg’s).
The relevance of [6] and its associated ACUOS tool as a symbolic technique is
that it supports reasoning about generalization in a setting that is both order-
sorted and modulo axioms B, and does so in a modular way. Specifically,
the work in [6] and its Maude implementation provide a modular order-sorted
equational generalization algorithm modulo B, where B can be any combination
of associativity and/or commutativity and/or identity axioms.

The homeomorphic embedding relation u�v, where, roughly speaking, u can
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be obtained from v by dropping some of v’s function symbols, gives a general
method for stopping any sequence of terms t0, t1, . . . , tn, . . . as soon as we can
find i < j such that ti�tj . This important relation has been studied for untyped
terms; but in the context of Maude we often need to use the homeomorphic
embedding relation u�v when u and v are order-sorted terms and, furthermore,
we need to reason not syntactically but modulo axioms B such as associativity
and/or commutativity, that is, with a relation u �B v. The relation �B , and
efficient algorithms for computing it implemented in Maude, have been studied
in [? ].

Both order-sorted generalization modulo B and homeomorphic embedding
modulo B are crucial components of a partial evaluator for Maude functional
modules. Partial evaluation of equational specifications had never been con-
sidered before in the order-sorted and modulo B level of generality needed for
Maude equational programs with convergent theories of the form (Σ, E ∪ B).
Partial evaluation methods that can work in this very general setting (note that
the usual “vanilla flavored” case where Σ is unsorted and B = ∅ is indeed a
very special subcase), have been developed in [3] and have been implemented in
Maude in the Victoria tool.

Theorem Provers. Using rewriting logic’s nice properties as a logical frame-
work (see the survey [98]), the symbolic techniques currently supported by
Maude can be applied to a wide range of theorem provers not just for Maude
and rewriting logic but for many other logics. We will focus here on theorem
proving tools more closely related to Maude. To begin with, let us discuss tools
for reachability logic. This logic was originally proposed in [118, 117, 131, 132]
as a language-generic approach to program verification parametric on the oper-
ational semantics of a programming language. Both Hoare logic and separation
logic can be naturally mapped into reachability logic [118, 117]. The work
in [125], extends reachability logic from a programming-language-generic logic
of programs to a rewrite-theory-generic logic to reason about both distributed
system designs and programs, based on their rewriting logic semantics. This
extension is non-trivial and requires a number of new concepts and results (see
[125]). In particular, concepts such as: (i) constructor pattern predicates, (ii)
narrowing with conditional rules, and (iii) variant satisfiability, go a long way
in making the constructor-based version of reachability logic proposed in [125]
much more easily mechanizable by exploiting the recent symbolic features of
Maude and the Maude-based variant satisfiability algorithms in [124]. Indeed,
the work in [125] has been implemented in Maude. It was originally inspired
by the also Maude-based work in [81], but it adds to that work a substantial
number of new results and methods.

The most recent Maude-based work on reachability logic provers closest to
the work in [125] is that in [80] and, even more so, in [23]. The approach in
[80] adopts a semantic framework for models similar to the already-discussed
work in [131, 132], i.e., state properties are specified using matching logic and
assume a given first-order logic model. Therefore, the semantic framework is
different from the one in [125]. An important contribution of the work in [80]
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is its coinductive semantics and justification for circular co-inductive reasoning.
Perhaps the recent work closest to [125] in the coinductive approach is that
of Ciobâcă and Lucanu in [23]. In summary, for verification of reachability
properties of rewrite theories —including Hoare logic properties as a special
case— the reachability logic theorem provers in [125], [80] and [23] seem to
be the most advanced and most promising, and all do make use of the Maude
symbolic techniques described in this paper.

Last, but not least, let us mention two other theorem proving tools. The
Tamarin theorem proving tool [88] for verification of cryptographic protocols
uses Maude’s variant-generation algorithm, initially only for the Diffie-Hellman
theory, but recently extended to finite variant theories in Maude [37]. Finally,
several decision procedures for formula satisfiability modulo equational theories
have been provided based on narrowing in the tool [133].

Further Reading for a Broader Perspective. This entire section can be
misleading, since we have said nothing at all about many other application
areas such as, for example: (i) specification and verification of programming
languages based on their rewriting logic definitions; (ii) real-time and cyber-
physical systems; (iii) probabilisitic systems; (iv) logical framework applications;
and (v) bioinformatics applications, to mention just a few areas. There is no
space here for discussing tools and applications on all those and other areas,
or just for discussing many other Maude-based tools. Fortunately, the survey
paper [98] gives a quite complete account of this broader perspective and, in
spite of being a few years old, is still a good starting point to obtain a broad
overview of the many applications made possible by Maude.

10. Conclusions and Future Work

In this paper we have both tried to give an introduction to Maude that does
not assume prior acquaintance with the language, and to describe important
new features that have been added to the language since 2007, when the Maude
book [28] appeared. Our intention has been to provide a journal-level entry
point to the language as it currently exists, both for readers new to Maude
and for readers familiar with Maude who would like to have a comprehensive
explanation of these important new features.

In particular, we have described those features enabling Maude’s very general
support for symbolic computation, including order-sorted unification algorithms:
(i) modulo axioms B like associativity and/or commutativity and/or identity,
and (ii) modulo equations E ∪ B where the equations E are convergent mod-
ulo B. Of particular importance is the existence of an infinite class of theories
E ∪ B (namely those having the finite variant property) for which Maude’s
E ∪B-unification algorithm always terminates with a complete set of most gen-
eral solutions for any unification problem. Furthermore, we have also described
Maude’s support for narrowing-based symbolic reachability analysis (that builds
on the E∪B-unification capability). This functionality allows the user to lever-
age the power of symbolic computation to carry out symbolic model-checking
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analyses of systems that would otherwise be unfeasible due to the need to ex-
plore infinite or very large state spaces. As we have explained in Section 9.1,
these symbolic features make possible a wide range of formal tools built using
them and many formal analysis applications.

We also discussed Maude’s strategy language, which provides a declarative
and modular way to carve out subsets of a system’s behavior without in any
way changing the rules specifying the system.

Finally, we introduced new external objects that allow Maude specifications
to interact with the external world: input/output objects—the three standard
IO objects and file objects (plus the prior socket objects); and a powerful new
kind of external objects called meta-interpreters. A meta-interpreter encapsu-
lates a Maude interpreter as an object, and can interact with other stateful
objects both internal and external (including other meta-interpreters).

Regarding future work, perhaps the most important symbolic computation
topic missing in the present paper is SMT solving. We have explained in Sec-
tion 9.1 that variant-based satisfiability of quantifier-free formulas for algebraic
data types specified by functional modules having the finite variant property
and satisfying mild additional assumptions is already available in an extension
of the META-LEVEL module and is used in reachability logic theorem proving.
But there is the additional fact that in recent years experimental versions of
Maude supporting access to the CVC4 [12] and Yices [52] SMT solvers have
been available and have been used in various applications. The main reason for
not including SMT solving in this paper is that we are still experimenting with
SMT solving features and it seems preferable to leave this topic for a future
publication.

Without trying to be exhaustive, three future directions seem both clear and
strategically important:

1. Symbolic Computation. Besides further advancing Maude’s support for
SMT solving, important new advances are needed in narrowing-based sym-
bolic model checking and in many theorem-proving applications.

2. Distributed Programming. The present, much more flexible support for in-
teraction with external objects opens up as never before the possibility of
a seamless and correct-by-construction passage from Maude specifications
of concurrent object systems to their deployment as distributed systems.
This can have important advantages for developing highly reliable dis-
tributed systems and for doing so in a fully declarative way.

3. Strategies. Now that strategies are available and efficiently supported at
the Core Maude level, many applications seem ripe, including, for example,
the following: (i) strategy-based model-checking algorithms; (ii) support
for strategies in Maude-based theorem-proving tools; and (iii) further ad-
vances of the rewriting logic semantics project [107, 108] made possible by
using strategies in the semantic definition of languages.
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[43] Durán, F., Lucas, S., Marché, C., Meseguer, J., Urbain, X., 2008. Prov-
ing operational termination of membership equational programs. Higher-
Order and Symbolic Computation 21, 59–88.

[44] Durán, F., Meseguer, J., 1998. An extensible module algebra for Maude,
in: [77]. pp. 174–195.

[45] Durán, F., Meseguer, J., 2003. Structured theories and institutions. The-
oretical Computer Science 309, 357–380.

[46] Durán, F., Meseguer, J., 2007. Maude’s module algebra. Science of Com-
puter Programming 66, 125–153.

[47] Durán, F., Meseguer, J., 2012. On the Church-Rosser and coherence prop-
erties of conditional order-sorted rewrite theories. Journal of Algebraic and
Logic Programming 81, 816–850.
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[50] Durán, F., Rocha, C., Álvarez, J.M., 2011b. Tool interoperability in
the Maude Formal Environment, in: Corradini, A., Klin, B., Ĉırstea, C.
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