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1 Introduction

A fruitful approach to the study of state-based systems consists in their mathematical for-
malization by means of models like Kripke structures, which allows to study their associated
properties by means of simulations to relate them to other, possibly better-known systems
[5,7,23]. This work tries to advance two main goals along those lines: the first, to generalize
the notion of simulation between Kripke structures as much as possible, and the second, to
provide general representability results showing that Kripke structures and generalized simu-
lations can be represented in rewriting logic [28], an executable logical framework with good
properties for representing many concurrent systems [28, 26]. These two goals are themselves
motivated by pragmatic reasons. The reason for trying to advance the first goal is that simu-
lations are essential for compositional reasoning. A cornerstone in such reasoning is the result
that simulations reflect temporal logic properties, that is, if we have a simulation of Kripke
structures H : A — B and a suitable temporal logic formula ¢, then if aHb and B,b |= ¢,
we can conclude that A,a = ¢. Since this result is enormously powerful, there are strong
reasons to generalize it: a more general notion of simulation will give it a wider applicability,
even when the class of formulas ¢ for which it applies may have to be restricted.

Advancing the second goal is also motivated by pragmatic reasons, namely: (i) executabil-
ity, (ii) ease of specification, and (iii) ease of proof. The point about (i) and (ii) is that rewriting
logic is a very flexible framework, so that concurrent systems can usually be specified quite
easily and at a very high level; furthermore, such specifications can be used directly to execute
a system, or to reason about it, which is point (iii). Indeed, both rewriting logic and its under-
lying equational logic can be very useful for formal reasoning, since often one needs to reason
beyond the propositional level. For example, even when we use a model checker to prove that
an infinite state system satisfies A, a = ¢ by constructing a finite state abstraction simulation
H : A — B and model checking that B,b |= ¢ for some b such that aHb, we are still left
with verifying the correctness of H, which requires discharging proof obligations. More gen-
erally, any temporal logic deductive reasoning needs to include first-order and often inductive
reasoning at the level of state predicates. This is precisely where rewriting and equational
logics and their initial models supporting inductive reasoning are quite useful. In a previous
paper [33] we have shown the usefulness of defining abstraction simulations equationally in
rewriting logic, and of using tools such as Maude’s LTL model checker [18] and inductive
theorem prover [12] to verify properties and prove abstractions correct. The conference paper
[27] further generalized [33] by allowing not just the addition of equations E’ to a theory
(X, E) for abstraction purposes, thus obtaining a subtheory inclusion (X, E) C (X', EUE’),
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but also the use of very general theory morphisms H : (X, E) — (X', E’). This work sub-
stantially widens the results in [33] and [27] and provides computability foundations for the
entire approach.

We advance the first goal by generalizing simulations in three directions. First, we con-
sider stuttering simulations in the sense of [5,35,24], which are quite general and useful to
relate concurrent systems with different levels of atomicity; second, we relax the condition on
preservation of atomic properties from equality to containment; and third, we allow differ-
ent alphabets AP and AP’ of atomic propositions in Kripke structures A and B related by
generalized stuttering simulations («, H) : A — B, so that an atomic proposition p € AP
is mapped by « to a state formula over AP’. We advance the second goal by proving sev-
eral representability results showing that any Kripke structure (resp. any recursive Kripke
structure) can be represented by a rewrite theory (resp. a recursive rewrite theory), and that
any generalized simulation (resp. r.e. generalized simulation) can be represented by a rewrite
relation.

A categorical viewpoint is indeed the most natural to understand these generalized simu-
lations, but as far as we know this viewpoint has not been systematically exploited before. In
the conference paper [38] we treated some of these categorical aspects at the level of Kripke
structures, including a classification in terms of institutions. This paper further expands some
of those ideas but, while presenting also new categorical ideas and results beyond those in
[38], it does not try to cover all the results in [38].

2 Relating Kripke Structures

In this section we start by reviewing standard material on Kripke structures and temporal
logic, and by recalling the notion of simulation presented in [33]. After that, we study how
these ingredients can be organized in terms of categories, and how the notion of simulation
can be generalized.

2.1 Transition Systems, Kripke Structures, and Temporal Logic

When reasoning about computational systems, it is convenient to abstract from as many
details as possible by means of simple mathematical models that can be used to reason about
them. For state-based systems we can, as a first step, represent its behavior by means of a
transition system.

Definition 1. A transition system is a pair A = (A, — ), where A is a set of states and
— 4 € A x A is a binary relation called the transition relation.

A transition system, however, does not include any information about the relevant proper-
ties of the system. In order to reason about such properties it is necessary to add information
about the atomic properties that hold in each state. Such atomic properties can be described
by a set AP of atomic propositions.

Definition 2. A Kripke structure is a triple A = (A, — .4, L 4), where (A, — 4) is a transition
system with — 4 a total relation, and Ly : A — P(AP) is a labeling function associating to
each state the set of atomic propositions that hold in it.

We use the notation a — 4 b to state that (a,b) € — 4. Note that the transition relation
of a Kripke structure must be total, that is, for each a € A there is a b € A such that a — 4 b.
This is a usual requirement [8] that simplifies the definition of the semantics for temporal
logics, of which Kripke structures are models. Given an arbitrary relation —, we write —* for



AalE=p <= p € Lul(a)

AalE=T < true

AalE=L < false

A,a = -p — Aaltp

AjalEpiVpr <= AalEy¢r or Aja =2

AjalE o1 ANpa <= A,a =1 and A, a =1

A,a =AY <= for all 7 such that 7(0) =a, A,7 E ¥

A,a = Ey <= there exists 7 with 7(0) = a such that A, 7 = ¢

Arke = A0 e

A, E — AmlEY

ArmEP1I VY <= Arm =y or A7

AmEVIAY <= AnEY: and A,7m E s

A, E Xy = ArtEvy

A, E 1 U2 <= there exists n € IN such that A, 7" |= 12 and, for all m < n,
it holds that A, 7™ = 91

A, m E 1Ry <= for all n € N, either A, 7" = 12
or there exists m < n such that A, 7™ = 91

A, =Gy < forallne Nitis A, 7" =

A, EFyY <= there exists n € IN such that A, 7" =1

Fig.1. CTL" semantics.

the total relation that extends — by adding a pair a —* a for each a such that there is no b
with @ — b. A path in A is a function 7 : IN — A such that, for each ¢ € IN, 7(i) — 4 w(i+1).
Given n € IN, we use 7" to refer to the suffix of 7 starting at w(n); explicitly, 7" (i) = 7(n+1),
for each ¢ € IN.

For example, the behaviour of a simple periodic system could be represented by means of
a transition system with three states, so, s1, and sz, and transitions s; — s(;41)%3. Now, to
distinguish among the different states and to reason about the system, this transition system
can be extended to a Kripke structure by making explicit some atomic properties satisfied by
the states, say L(sg) = {sleeping}, L(s1) = {waiting}, and L(s2) = {working}. Note that
the relevant properties may vary based on the interest at hand; thus, a less precise alternative
would be L(sg) = L(s1) = {off} and L(s2) = {on}.

To specify system properties we will use the logic ACTL*(AP), which is the universally
(path) quantified sublogic of the branching-time temporal logic CTL*(AP) (see for example
[8, Section 3.1]). These logics are interpreted in a standard way in Kripke structures.

There are two types of formulas in CTL*(AP): state formulas, denoted by State(AP),
and path formulas, denoted by Path(AP). Their syntax is given by the following mutually
recursive definitions:

state formulas: pu=pe AP | T|L|-p|leVe|lpAp| Ay | Ey
path formulas: ¢ =9 [0 [P VY [P AY | XY [ YUY | YRY | G [ Fop.

A and E are respectively the universal and the existential quantifiers, while the operators X,
U, R, G, and F have the intuitive meanings of next, until, release, henceforth, and eventually.
The semantics of the logic, specifying the satisfaction relations A, a = ¢ and A, 7 = 1 for a
Kripke structure A, an initial state a € A, a state formula ¢, a path 7, and a path formula
1 is defined by structural induction on formulas as shown in Figure 1.

ACTL*(AP) is the restriction of CTL*(AP) to those formulas such that their negation-
normal forms (with negations pushed to atoms) do not contain any existential path quantifiers.
Sometimes, to avoid introducing implicitly existential quantifiers, it is more convenient to



restrict ourselves to the negation-free fragment ACTL*\—(AP) of ACTL*(AP), defined as
follows:

state formulas: @u=p€e AP | T|L|pVel|loAp]| Ay
path formulas: Y =@ |V VY |YAY | XY | YUY | YRy | Gy | Fy.

We write State\—(AP) and Path\—~(AP), respectively, for the sets of state and path formulas
in ACTL*\-(AP). We also write ACTL* \ X(AP) for the fragment of the logic that does
not contain the next operator. Note that in a very practical sense there is no real loss of
generality by restricting ourselves to formulas in ACTL*\—, because we can always transform
any ACTL* formula into a semantically equivalent ACTL*\— one just by introducing new
atomic propositions for the negation of the original ones.

2.2 Simulations

We present a notion of simulation similar to that in [8], but somewhat more general (sim-
ulations in [8] essentially correspond to our strict simulations). First, we define simulations
between transition systems.

Definition 3. Given transition systems A = (A,— ) and B = (B,—pg), a simulation of
transition systems H : A — B is a binary relation H C A x B such that if a —4 o' and
aHb then there is b such that b —g b’ and o’ HY' .

We say that H is a total simulation if the relation H is total. A map of transition systems
H is a total simulation such that H is a function.® If both H and H™' are simulations, then
we call H a bisimulation.

We can extend a simulation of transition systems H to paths by defining 7 Hp if (i) H p(%)
for each ¢ € IN.

Definition 4. Given Kripke structures A = (A, —4,L ) and B = (B,—pg, Lg), both over
the same set AP of atomic propositions, an AP-simulation H : A — B of A by B is given
by a simulation H : (A, —4) — (B, —pg) between the underlying transition systems such
that if aHb, then Lp(b) C La(a).

We say that H is an AP-map if its underlying simulation of transition systems is a map.
We call H an AP-bisimulation if H and H~' are AP-simulations. Also, we call H strict if
aHb implies Lp(b) = La(a). Note that an AP-bisimulation is necessarily strict.

The fact that H : A — B is a simulation of transition systems guarantees that for each
concrete path in A starting at a state related to one in B there is a path simulating it in B. The
second condition implies that a state in B can at best satisfy only those atomic propositions
that hold in all the states in A that it simulates.

Notice that the definition of simulation of transition systems, and therefore that of AP-
simulation, is very general, not even requiring H to be total. This leads to some perhaps
unexpected consequences: for example, the empty relation is vacuously a bisimulation! The
notion is natural, however, in that every AP-simulation arises from a total AP-simulation
restricted to a certain domain of interest.

Definition 5. Given transition systems A and B, A is a subsystem of B if A C B and
— 4 C —p; we then write A C B. We say that a subsystem A is full in B if for all a € A, if
a—pa thena € Aanda—4d.

A Kripke structure A is a Kripke substructure of B if A’s underlying transition system is
a subsystem of that of B and L x = Lg|a. It is full if it is so at the level of transition systems.

3 Unless explicitly mentioned, all our functions will be total.



Remark 1. Note that if A is a full Kripke substructure of B then the inclusion i : A — B is
an AP-bisimulation.

Proposition 1. Let H : A — B be an AP-simulation. Then, for any full Kripke substruc-
ture B C B, H'(B') = (H Y(B'), 4N (H ' (B') x HY(B')), Lalg-1(p)) is a full Kripke
substructure of A. In particular, H=Y(B) is a full Kripke substructure of A.

Proof. We have to show that the transition relation is total and that H~!(B’) is full in A.
Let a be an element of H~!(B’) such that a — 4 a’ (which exists because — 4 is total). By
definition, there exists b € B’ such that aHb. Now, since H is a simulation, there is ¥’ € B
such that ' HY and b —p b’, and since B’ is full in B, b’ € B’. Hence o’ € H=*(B’), —H-1(B)
is total, and H~1(B’) is full in A. O

Therefore, every AP-simulation H : A — B can alternatively be seen as a total simulation
H:H YB) — B.
As easy consequences of the definitions we have the following results about simulations.

Lemma 1. If {H; : A — Bl}icr is a set of simulations of transition systems (resp. AP-
simulations) then \J;c; H; : A — B is a simulation of transition systems (resp. an AP-
simulation).

Corollary 1. For any two transition systems (resp. Kripke structures) A and B there is
a greatest simulation of transition systems (resp. AP-simulation) between them (that can
perhaps be empty).

Corollary 2. For any transition system (resp. Kripke structure) A there is a greatest bisim-
ulation H : A — A of transition systems (resp. AP-bisimulation) and it is an equivalence
relation.

Lemma 2. If F: A — B and G : B — C are simulations of transition systems (resp.
AP-simulations) then Go F is also a simulation of transition systems (resp. AP-simulation,).

The important fact about AP-simulations is that they reflect the satisfaction of appropri-
ate classes of formulas.

Definition 6. An AP-simulation H : A — B reflects the satisfaction of a formula ¢ €
CTL*(AP) if either:

— © is a state formula, and B,b = ¢ and aHb imply A, a = ¢; or
— @ 1s a path formula, and B, p = ¢ and mHp imply A, 7 = ¢.

The following theorem slightly generalizes Theorem 16 in [8]:

Theorem 1. AP-simulations always reflect satisfaction of ACTL*\=(AP) formulas. In ad-
dition, strict simulations also reflect satisfaction of ACTL*(AP) formulas.

Proof. Let us first consider the non-strict case. Let H : A — B be an AP-simulation and let
a € A and b € B be such that aHb. If 7 is a path in A starting in a, it is straightforward to
prove that there is a path p in B that starts in b such that wH p, by induction over the length
of initial segments. Then, for every state formula ¢ and path formula 7 in ACTL*\—(AP) it
can be proved by simultaneous structural induction that B,b |= ¢ implies A, a = ¢ and that
B, p 1 implies A, m = .

Each of the cases is immediate and we only consider some of them. For an atomic propo-
sition p, if B,b |= p it follows that p € Lg(b) and since H is a simulation, Lg(b) C L 4(a) and



A, a = p. For the cases corresponding to the operators T, V, and A it is enough to apply the
induction hypothesis. If B,b |= A, then B, p’ |= 9 for all paths p’ that start in b. Let 7’ be a
path that starts in @ and, by abuse of notation, let H(n’) be a path in B that starts in b such
that 7’ H H(7'). Tt follows that B, H(7') = 1 and, by induction hypothesis, A, 7’ |= 1; since
this holds for every path that starts in a, A, a = At. For the remaining temporal operators,
the pattern is the same.

For the strict case, it is enough to show the result for formulas in negation-normal form
because every formula is semantically equivalent to one of those. The proof proceeds as before
with an additional case for —p, for which we have that B,b = —p implies p ¢ Lg(b) and thus,
since H is strict, p ¢ L a(a) and A, a = —p. O

Note that, by Lemma 2 above, simulations of transition systems and of Kripke structures
compose. Note also that the identity function 14 : A — A is trivially a simulation of transi-
tion systems and of Kripke structures. Therefore, transition systems together with their sim-
ulations define a category TSys. Similarly, Kripke structures together with A P-simulations
define a category? KSim 4 p, with two corresponding subcategories KMap 4 » and KBSim 4 p
whose morphisms are, respectively, AP-maps and A P-bisimulations. There is also of course a
subcategory KSim?®" of strict AP-simulations, and corresponding subcategories KMap®»
and KBSimSj} = KBSim 4 p. Note that if H is an isomorphism in KSim 4 p then it must be
a map and a bisimulation. Note, finally, that the mapping (A4, —4,L4) — (A, —4) extends
to a forgetful functor TS : KSim p — TSys.

Corollary 3 ([8]). If H : A — B is an AP-bisimulation, then for any ¢ € CTL*(AP) and
a€ A, be B with aHb we have A,a = ¢ iff B,b |= .

2.3 Shifting One’s Ground

We are interested in a more general definition of simulation, one in which Kripke structures
over different sets AP and AP’ of atomic propositions can be related. This provides a very
flexible way of relating Kripke structures and will allow us to gather all the previous categories
KSim 4 p into a single one. First we need the following definition to translate the properties
of a Kripke structure to a different set of atomic propositions.

Definition 7. Given a function o : AP — State(AP’) and a Kripke structure A = (A, — 4,
L) over AP', we define the reduct Kripke structure Al, = (A, —.a,Ly),) over AP, with
labeling function L | (a) = {p € AP | A,a = a(p)}.

The definition of « is extended in the expected, homomorphic way to formulas ¢ €
CTL*(AP), replacing each atomic proposition p occurring in ¢ by a(p); we denote the formula
resulting from this translation by @(¢). We then have the following result.

Proposition 2. Let a: AP — State(AP’) be a function and let ¢ € CTL*(AP). Then, for
all Kripke structures A = (A, — 4, L) over AP’, states a € A, and paths :

— if v is a state formula, A a = a(p) <= Ala,a =@, and
— if ¢ is a path formula, A,m =a(p) <= Ala, 7 E @.

4 A categorically-oriented reader may recognize the category of Kripke structures and AP-
simulations as the category of partial morphisms associated to the category of Kripke structures
and total AP-simulations by the choice of full Kripke substructures as subobjects.



Proof. We prove both statements simultaneously by induction on the structure of formulas.
The result follows by definition of A|, if p is an atomic proposition, and it is trivial for T
and 1. For Ay, it is

Aa Eal(Ap) < A,m Ea(p) for all paths 7 starting at a
<= A|,, 7= for all paths 7 starting at a
— Al|n,a = Ap

where the first equivalence holds because @(A¢) = A@(p) and the second one because of the
induction hypothesis. For Fy,

A mEaFp) < A " = a(p) for some n € IN
< Al|y, ™ E ¢ for some n € IN
<~ Al|,,m=Fop

where the second equivalence follows from the induction hypothesis. The proof proceeds
analogously for the rest of temporal logic operators. a

Note that it makes no sense to map an atomic proposition, which is a state formula, to
an arbitrary CTL* formula that may turn out to be a path formula. Therefore, the choice
of State(AP’) as the range of the functions « is as general as possible. Also, note that when
dealing with non-strict simulations, since the reflected formulas will be in ACTL*\—(AP), we
will want our functions « to have their range in the negation-free fragment State\—(AP’),
i.e., we will use functions o : AP — State\—(AP’) instead.

The definition of generalized simulations is now immediate.

Definition 8. Given a Kripke structure A over a set AP of atomic propositions and a Kripke
structure B over a set AP’, a simulation (resp. strict simulation) (o, H) : (AP, A) —
(AP, B) consists of a function o : AP — State\—(AP’) (resp. « : AP — State(AP’)) and
an AP-simulation (resp. strict AP-simulation) H : A — Bl,. We call (o, H) a map (resp.
strict map) or a bisimulation if H is so in the category KSim4p (resp. KSim%} ).
Proposition 3. If (o, F) : A — B and (8,G) : B — C are simulations, then (3,G) o
(a,F) = (Boa,GoF) is also a simulation.

Proof. Assuming that AP is the set of atomic propositions of A, we have to check that
GoF:A— Cg,, is an AP-simulation. Let a € A and ¢ € C be such that a(G o F))c; then
there is b € B such that aF'b and bGe.

Let us first check that G o F' is a simulation of the underlying transition systems. If
a — 4 a,since F : A — B, is an AP-simulation there is ¥’ € B such that o' Ft/ and b —5 b';
now, analogously, there is ¢’ € C such that ¥’ G¢’ and ¢ —¢ ¢/. We then have o/ (G o F')¢’ with
¢ —¢ ¢ as required.

Now, let p € LC|EM(C):

pE LC‘EM () <= C,c = B(a(p)) (by definition)
<= Clg,c = a(p) (by Proposition 2)
= B,b}=a(p) (by Theorem 1)
< Bla,bEDp (by Proposition 2)
= Aalp (F is an AP-simulation)
<= p€ Ly(a)
That is, Lc|§w (¢) C L4(a) and G o F is an AP-simulation. O



Therefore, using as objects pairs (AP, A) with AP a set of atomic propositions and A
a Kripke structure over AP, this immediately gives rise to categories KSim, KMap and
KBSim. Again, if (a, H) is an isomorphism in KSim then H must be a map and a bisimu-
lation.

Note, however, that strict simulations do not compose. In the above proof, if F' and G
were strict the last implication would become an equivalence, but not so the first one. For
example, consider the following three Kripke structures over the same set AP = {p} of atomic
propositions, with L 4(a) = Lg(b) = Le(c) = {p} and L¢(d) = 0:

A B C
;Q ;Q C;H;Q

Now, if we define a(p) = AGp, 5(p) = p, f(a) = b, and g(b) = ¢, it is easy to check that
(o, f) : (AP, A) — (AP,B) and (08,9) : (AP,B) — (AP,C) are strict simulations but
(Boa,go f): (AP, A) — (AP,C) is not: p ¢ Lei, (c) because C,c = AGp. Clearly, the
reason behind this lies in the fact that e maps an atomic proposition to an arbitrary formula.
Strict AP-simulations compose because the elements they relate satisfy exactly the same
set of atomic propositions; now that we are shifting our ground and transforming atomic
propositions into general formulas it would be necessary for related elements to satisfy those,
which in general is not the case.

Thus, if one were interested in having strict simulations that could be composed the
range of the function o would have to be restricted. It would be enough to require « to
map atomic propositions only to atomic propositions, but a mild generalization is actually
possible: a’s range has to be of the form Bool(AP), the state formulas in ACTL*(AP) that
do not contain the operator A (that is, the Boolean expressions over AP). Then, composition
of strict simulations is a consequence of the following specialization of Theorem 1.

Proposition 4. Strict AP-simulations, in addition to reflecting them, always preserve for-
mulas in Bool(AP).

To simplify notation, from now on we will write (o, H) : A — B instead of (a, H) :
(AP, A) — (AP’,B) except in those cases where it could lead to confusion.

Definition 9. Given Kripke structures A over AP and B over AP’, a simulation (o, H) :
A — B reflects the satisfaction of a formula ¢ € CTL*(AP) if either:

— © is a state formula, and B,b |=a(p) and aHb imply that A, a |= @; or
— @ is a path formula, and B, p = a(p) and wHp imply that A, 7 |= ¢.

The main results that we had for Kripke structures over a fixed set of atomic propositions
extend naturally to generalized simulations.

Theorem 2. Simulations always reflect satisfaction of ACTL*\— formulas. In addition, strict
simulations also reflect satisfaction of ACTL™ formulas.

Proof. The result is a consequence of Proposition 2 and Theorem 1. a

2.4 Stuttering Simulations

Another direction in which the original definition of simulation can be extended is that of
stuttering bisimulations [5, 35] and, more generally, stuttering simulations [24].



Definition 10. Let A= (A, —4) and B = (B, —pg) be transition systems and let H C Ax B
be a relation. Given a path m in A and a path p in B, we say that p H-matches w if there
are strictly increasing functions a, 3 : N — IN with «(0) = £(0) = 0 such that, for all
i,j,k € IN, if a(i) < j<a(i+1) and 8(i) <k < B(i + 1), it holds that w(5)Hp(k).

For example, the following diagram shows the beginning of two matching paths, where
related elements are joined by dashed lines and «(0) = 8(0) =0, (1) =2, B(1) = 3, a(2) = 5,
etc.

™
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[ ] [ ]
| ~ 7N AN | -
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Definition 11. Given transition systems A and B, a stuttering simulation of transition sys-
tems H : A — B is a binary relation H C A x B such that if aHb, then for each path 7 in
A starting at a there is a path p in B starting at b that H-matches .

If H is a function we say that H is a stuttering map of transition systems. If both H and
H~' are stuttering simulations, then we call H a stuttering bisimulation.

Stuttering simulations of transition systems compose [24] and together with transition
systems define a category that we denote STSys.
The extension to Kripke structures is immediate:

Definition 12. Given Kripke structures A = (A, —4,L4) and B = (B,—p, Lg) over AP,
a stuttering AP-simulation H : A — B is a stuttering simulation of transition systems
H : (A,—a) — (B,—g) such that if aHb then Lp(b) C La(a). We call the stuttering
AP-simulation strict if aHb implies Lg(b) = L 4(a).

Again, stuttering AP-simulations compose and define a category KSSim 4p with corre-
sponding subcategories of strict and stuttering AP-maps.

Our definition of stuttering simulation is closely related to the one given by Manolios [24,
25], but with some technical and methodological differences. He defines such simulation on a
single set obtained by forming the disjoint union of the two Kripke structures, and has two
different ingredients: the simulation relation and a refinement map which “borrows” for the
source structure the labeling information from the target structure.

As it happened for AP-simulations, every stuttering AP-simulation arises from a total
one.

Proposition 5. Let H : A — B be a stuttering AP-simulation. Then, for any full Kripke
substructure B’ C B, the triple H='(B') = (H~(B'), »aN(H*(B") x H~Y(B")), Lalu-1(5")
is a full Kripke substructure of A. In particular, H=1(B) is a full Kripke substructure of A.

Proof. We have to show that the transition relation is total and that H—*(B’) is full in A.
Let a be an element of H~1(B’) such that a — 4 a’ (which exists because — 4 is total), and
let w be a path in A such that 7(0) = a and 7(1) = o’. By definition, there exists b € B’ such
that aHb. Now, since H is a stuttering AP-simulation, there is a path p in B starting at b
that H-matches 7, and since B’ is full in B, p is actually a path in B’. Since p H-matches ,
it is o’ Hp(i) for some i; hence o’ € H™'(B’), —p-1(g) is total, and H~'(B') is full in A. O

The definition of when a simulation reflects the satisfaction of a formula has to be slightly
modified in this new context for the case of paths.

Definition 13. A stuttering AP-simulation H : A — B reflects the satisfaction of a formula
p € CTL*(AP) if either:



— @ is a state formula, and B,b = ¢ and aHb imply that A,a |= ¢; or
— @ is a path formula, and B, p |= ¢ and p H-matches © imply that A, 7 |= ¢.

It is clear that the next operator X of temporal logic is not reflected by stuttering AP-
simulations; however, if we restrict our attention to ACTL*\X(AP) and ACTL"\{—, X}(AP),
that is, the fragments of the logics that do not contain X, formulas are reflected. In practice,
the elimination of the operator X is not a great loss since, as argued in [22], interesting prop-
erties are not so much concerned about what happens in the next step as to what eventually
happens. Also, the notion of “next step” assumes a fixed notion of atomic transition, whereas
one of the important roles played by stuttering simulations is that they can relate systems
having different levels of computational granularity, so that what is an atomic transition in
one system may correspond to a sequence of transitions in the other system.

Theorem 3. Stuttering AP-simulations always reflect satisfaction of ACTL*\{-,X}(AP)
formulas. In addition, strict stuttering AP-simulations also reflect satisfaction of formulas in
ACTL* \ X(AP).

Proof. Let H : A — B be a stuttering AP-simulation and assume that aHb and that p
H-matches 7 through o and ; we proceed by induction on the structure of state and path
formulas.

For an atomic proposition p, if B,b = p then p € Lg(b) C L4(a), and thus A, a = p. The
result is trivial for T and L. For a state formula Ay, if B,b = Ap then B,p’ = ¢ for all
paths p’ in B starting at b. Let then 7’ be a path in A starting at a and, by abuse of notation,
write H (') for one of its H-matching paths in B starting at b. Then, B, H(r') | ¢ and, by
induction hypothesis, A, 7’ = ¢, and therefore A, a = Agp.

The result for the logical operators V and A, for state and path formulas, follows straight-
forwardly from the induction hypothesis.

If B,p = Fp then there exists n € IN such that B, p"™ = . Let ¢ be the unique natural
number such that 3(i) < n < B(i + 1). Then p?@ but also p™, H-match 7*() and, by
induction hypothesis, A, 7% |= ¢ and therefore A, 7 = F.

If B, p = 1 Ugsy, there exists n € IN such that B, p™ = @9 and, for all m < n, B, p™ = ¢1.
Let i be the unique natural number such that 3(i) < n < B(i +1). Then p"” H-matches 7%
and, by induction hypothesis, A, 7@ E 2. Let m < «a(4). If j is the unique natural number
such that a(j) < m < a(j + 1), since « is strictly increasing it must be j < 4, and since 3 is
also strictly increasing, 3(j) < 3(i) < n and thus B, p®9) = ;. Since p®) H-matches 7™,
A, ™ = 1 by induction hypothesis and therefore A, 7 = 1 Ugps.

The proofs for R and G are similar.

In the case of strict stuttering AP-simulations it is enough to consider only formulas
in negation-normal form. The proof proceeds exactly as above but we have to consider the
additional case in which the formula is of the form —p. In this case, if B, b |= —p then p ¢ L (b)
and, since H is strict, p ¢ La(a) and A, a = —p as required. a

Corollary 4. If H : A — B is a stuttering AP-bisimulation, then for any ¢ € CTL" \
X(AP) and a € A, b € B with aHb we have A,a |= ¢ iff B,b = ¢.

Proof. Tt is essentially like that for Theorem 3. The only new case corresponds to the exis-
tential quantifier B, which follows because now given a path p in B we can always find a path

7 in A such that © H-matches p.

Finally, we can combine both extensions of the notion of simulation for Kripke structures
(stuttering and shifting one’s ground) into a single definition.
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Definition 14. Given a Kripke structure A over a set AP of atomic propositions and a
Kripke structure B over a set AP', a stuttering simulation (resp. strict stuttering simulation )
(a, H) : (AP, A) — (AP',B) consists of a function o : AP — State\{—, X}(AP’) (resp.
a : AP — State \ X(AP')) and a stuttering AP-simulation (resp. strict stuttering AP-
simulation) H : A — Blq.

Note that we have restricted the range of o by forbidding the use of X. This is in corre-
spondence with the fact that the mext operator is useless in the presence of stuttering. The
notions of stuttering map, strict stuttering map, and bisimulation are defined in the expected
way. Again, we will usually write (o, H) : A — B instead of (a, H) : (AP, A) — (AP, B).

Proposition 6. If (a,F) : A — B and (3,G) : B — C are stuttering simulations, then
(B,G)o(a, F) = (Boa,GoF) is also a stuttering simulation.

Proof. Assume that A is a Kripke structure over the set of atomic propositions AP: we have
to check that Go F': A — C|an is a stuttering AP-simulation. F' and G are stuttering sim-
ulations of the underlying transition systems and therefore, as proved in [24], its composition
is also a stuttering simulation of transition systems. Let now a € A and ¢ € C be such that
a(G o F)c, and let p € Lqﬁoa(c). Then, there exists b € B such that aF'b and bGc, and we

have the following chain of implications:

peLe, (¢) & C,c k= B(alp)) (by definition)
<= Clg,c = a(p) (by Proposition 2)
= B,bE a(p) (by Theorem 3)
<~ Bla,bEDp (by Proposition 2)
= AalEp (by Theorem 3)
<= p€ La(a)

That is, Lei (¢) € La(a) and G o F is a stuttering AP-simulation. 0

Therefore, we have a category KSSim of Kripke structures and stuttering simulations,
with corresponding subcategories for stuttering AP-simulations, maps, bisimulations, ... As
we noted when we first presented generalized simulations in Section 2.3, in order for strict
stuttering simulations to compose it is necessary that the range of the function o be Bool(AP).

The following theorem generalizes all previous results about simulations reflecting the
satisfaction relation.

Theorem 4. Stuttering simulations always reflect satisfaction of ACTL*\{—, X} formulas.
In addition, strict stuttering simulations also reflect satisfaction of ACTL™ \ X formulas.

Proof. 1t is a consequence of Theorem 3 and Proposition 2. a

Remark 2. Actually, this result is true even if we allow general functions of the form « :
AP — State\=(AP’) in the definition of stuttering simulations; the restriction to formulas
without the next operator is only necessary for the composition to be well-defined.

Corollary 5. If (a, H) : A — B is a stuttering bisimulation, then for any ¢ € CTL" \
X(AP) and a € A, b € B with aHb we have A,a = ¢ iff B,b = @(yp).

Definition 12 characterizes stuttering simulations in terms of infinite paths. In [24], an

alternative, more finitary characterization, called well-founded simulation, is presented, which
can also be adapted to our framework.
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Definition 15. Let A = (A, —4) and B = (B, —pg) be transition systems. A relation H C
A x B is a well-founded simulation of transition systems from A to B if there exist functions
p:AxB—Wandp : Ax Ax B— IN, with (W, <) a well-founded order, such that
whenever aHb and a — 4 o', either:

1. there is b’ such that b —g b’ and o' HVY, or
2. a'Hb and p(a’,b) < p(a,b), or
3. there is b such that b —g b, aHVY, and ' (a,a’,b") < p'(a,d’,b).

Remark 3. Note that if H is a function only conditions (1) and (2) apply and the function p’
is not necessary.

Definition 16. Given Kripke structures A = (A, —4,L4) and B = (B,—p, Lg) over AP,
a relation H C A X B is a well-founded AP-simulation if H is a well-founded simulation of
transition systems and Lg(b) C L 4(a) whenever aHb.

Then we have the following important theorem, which can be proved by adapting the
proof in [24] to our setting.

Theorem 5. Let A= (A,—4,LA) and B = (B,—p, L) be Kripke structures over AP, and
H C Ax B. Then, H is a well-founded AP-simulation iff it is a stuttering AP-simulation.

3 Membership Equational Logic and Rewriting Logic

When specifying a system, one can distinguish two specification levels:

— a system specification level, in which the computational system of interest is specified,
and
— a property specification level, in which the relevant properties are specified.

The system itself will typically be some kind of transition system A = (A, — 4). However, to
even be able to talk about system properties, we may need to make explicit some state pred-
icates in such a system. Such predicates may not belong to the original system specification:
they may just be needed in order to interpret relevant properties. Such an interpretation of
atomic propositions will typically be made by adding a labeling function L : A — P(AP)
to our transition system, thus obtaining a Kripke structure A = (A, — 4, L.4). The property
specification level as such, will then typically correspond to the different temporal logic for-
mulas ¢ (or formulas in some other logic) that such a system is then supposed to satisty,
according to a satisfaction relation A, a = .

The main interest of rewriting logic [28] is that it provides a very flexible framework for
the system-level specification of concurrent systems, as witnessed by the numerous references
in [26]. Rewriting logic is parameterized by an underlying equational logic: in this paper
we use membership equational logic, whose main features we now review. As we shall see,
both transition systems and Kripke structures can be naturally specified in a high level way
as rewrite theories. The property specification level will correspond to those temporal logic
formulas that the system so specified satisfies.

3.1 Membership Equational Logic

A signature in membership equational logic is a triple (K, X, S) (just X' in the following), with
K aset of kinds, X = { Xk, .k, k}(ky..kn, k) e k= x k& @ many-kinded signature, and S = {Si }rex
a pairwise disjoint K-kinded family of sets of sorts. The kind of a sort s is denoted by [s].

12



We write T’s; ;, and T’ (X) to denote respectively the set of ground X-terms with kind k
and of X-terms with kind k over variables in X, where X = {z1 : k1,...,2, : k,} is a set of
K-kinded variables. Intuitively, terms with a kind but without a sort represent undefined or
error elements.

The atomic formulas of membership equational logic are either equations t = t’, where t
and t' are X-terms of the same kind, or membership assertions of the form ¢ : s, where the
term ¢ has kind k£ and s € Sj,. Sentences are universally-quantified Horn clauses of the form
(VX)Ap if Ay A ... A A, where each A; is either an equation or a membership assertion,
and X is a set of K-kinded variables containing all the variables in the A;. A theory is a pair
(X, E), where E is a set of sentences in membership equational logic over the signature X.
We write (X, E) F ¢, or just E - ¢ if X is clear from the context, to denote that (X, E)
entails the sentence ¢ in the proof system of membership equational logic [30].

A XY-algebra A consists of a set Ay, for each k € K, a function Ay : Ap, x...x Ay, — Ay
for each operator f € Xy, .k, and a subset A, C Aj for each sort s € Si, with the
meaning that the elements in sorts are well-defined, whereas elements in a kind not having a
sort are “undefined” or “error” elements. A theory (¥, E) has an initial model T,z whose
elements are E-equivalence classes of terms [t]. We refer to [4,30] for a detailed presentation
of (X, E)-algebras, sound and complete deduction rules, initial and free algebras, and theory
morphisms.

3.2 Rewriting Logic

Concurrent systems are axiomatized in rewriting logic by means of rewrite theories [28] of
the form R = (X, E, R, ¢). The set of states is described by a membership equational theory
(¥, E) as the algebraic data type T's/p ) associated to the initial algebra T, g of (¥, E)
by the choice of a kind k of states in Y. The system’s transitions are axiomatized by the
conditional rewrite rules R, which are of the form

A (VX)t — ' if /\pi:qi/\/\wjzsj/\/\tlﬁtg,
i€l jeJ leL

with X a label, p; = ¢; and w; : s; atomic formulas in membership equational logic for ¢ € I
and j € J, and for appropriate kinds k and ki, t,t' € T (X), and t;,t] € T 1, (X) for l € L.
The last component ¢ : ¢ — Pxp(IN) is a function assigning to each f : k1 ...k, — kin X a
set &(f) = {i1,...,ix} C{1,...,n} of frozen argument positions, so that for f(¢1,...,t,) it
is forbidden to rewrite with R at any subterm position t; with j € ¢(f).

Rewriting logic has inference rules to infer all the possible concurrent computations in a
system [28, 6], in the sense that, given two states [u], [v] € T g 1, we can reach [v] from [u] by
some possibly complex concurrent computation iff we can prove u — v in the logic; we denote
this provability by R - v — v. In particular we can easily define the one-step R-rewriting
relation, which is a binary relation —>%37k on T’} that holds between terms u,v € Ty iff
there is a one-step proof of u — v, that is, if there is a proof in which only one rewrite rule
in R is applied to a single subterm. We can get a binary relation (with the same name) _>%a, &
on Ty, g by defining [u] —% ;. [v] iff ' —% , v’ for some v’ € [u], v" € [v]. This defines a
transition system 7 (R)y, = (T gk, (=R 1)*) for each k € K.

Under reasonable assumptions about E and R, rewrite theories are executable. Indeed,
there are several rewriting logic language implementations, including CafeOBJ [19], ELAN [3],
and Maude [10, 11]. From an operational viewpoint, the set of equations is divided into a set
A of equational axioms for some of the operators in the signature, for which there exists a
finitary A-matching algorithm, and a set E that will always be considered to be a set of
simplifying (oriented) equations modulo A. For a rewrite theory R = (X, E U A, R, ¢) to
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be executable the equations E have to be (ground) Church-Rosser and terminating modulo
A, and the rules R have to be (ground) coherent [43] relative to the equations E modulo
A. The last condition means that for each ground term ¢, whenever we have t —>%3 U we
can always find a one-step rewrite cang,a(t) —% v such that [cang/a(u)]a = [cang a(v)]a,
where canpg/4(t) denotes the canonical form of ¢ after simplification with the equations E
modulo A, which by the Church-Rosser and termination assumptions exists and is unique
modulo A. This implies that (H%z’k)‘ is a computable binary relation on Tz, gua,k, since we
can decide [t|pua —% [u]pua by enumerating the finite set of all one-step R-rewrites modulo
A of cangya(t), and for any such rewrite, say v, we can decide [cang/a(u)]a = [cang/a(v)]a.

3.3 Example: Semantics of a Functional Language

In [21], a simple functional language called Fpl is defined along with three different semantics.
In Section 5.3.1 we will use this language and two of its semantics to illustrate simulations,
but now we consider it just for the purpose of showing how systems are specified in rewriting
logic.

We consider the computation semantics: in it, a state is a pair {p,e), with p an envi-
ronment and e an expression. Environments are represented in a rewrite theory by terms of
sort Env. Similarly, there are two sorts to represent numerical and Boolean expressions, NExp
and BExp, together with several operators, like +_ : NExp NExp -> NExp to represent addi-
tion, or If Then Else_ : BExp NExp NExp -> NExp for conditional expressions, where the
underbars are placeholders for the arguments. Finally, states are constructed with operators
<_,> : Env NExp -> State and <_, > : Env BExp -> State. In this particular example
no equations are needed. Then, the transitions of the system are given by rewrite rules like

rl [IfRc] : < rho, If T Then e Else e’ > => < rho, e > .

that specifies the behavior of the If expression when its condition is true. (IfRc is the label,
and crl would be used to introduce a conditional rule.) The complete set of rules of the
rewrite theory can be found in Section 5.3.1 (see Figure 2 on page 26), and it gives rise to a
transition system C = (C, —¢).

4 Specifying Kripke Structures as Rewrite Theories

4.1 Temporal Properties of Rewrite Theories

In order to be able to associate temporal properties to a rewrite theory R = (X, E, R) we
first need to make explicit two things: the intended kind k of states in the signature X', and
the relevant state predicates on which any such temporal properties will be based, so that
they can be interpreted in our system.

Once the kind k is fixed, the transitions between states are given by 7 (R)g. In general,
however, the state predicates need not be part of the system specification but may only be
needed for property verification purposes when we want to show that some temporal logic
properties are satisfied. We can assume that they have been defined by means of equations D
in a protecting theory extension (X', E'U D) of (X, E); that is, the extension is conservative
in the sense that the unique Y-homomorphism T’z — Ts/,pup|s should be bijective at
each sort in X. We also assume that (X', EU D) contains the theory BOOL of Boolean values
in protecting mode. Furthermore, we assume that the syntax defining the state predicates
consists of a subsignature I C X’ of operators, with each p € IT a different state predicate
symbol that can be parameterized, that is, p need not be a constant, but can in general
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be an operator p : sy...8, — Prop. If k is the kind of states, the semantics of the state
predicates IT is defined with the help of an operator _ |= _: k Prop — Bool in X’ and by the
equations EUD. By definition, given ground terms w1, ..., u,, we say that the state predicate
p(u1, ..., u,) holds in the state [¢] iff

EUDFtEp(uy,...,u,) = true.

Then, we associate to a rewrite theory R = (X, E, R, ¢) (with a selected kind & of states
and with state predicates IT) a Kripke structure whose atomic propositions are specified by
the set APy = {6(p) | p € II, 6 ground substitution}, where by convention we use the
simplified notation 6(p) to denote the ground term 6(p(z1,...,2,)). We define

KR, k)it = (Tsg (—Rp)" L)

where
L([t]) = {6(p) € APyt | 6(p) holds in [£]} .

For example, if we consider as the set of atomic propositions the set of all possible values,
the rewrite theory specifying the computation semantics of the Fpl language in Section 3.3
can be extended by declaring a constant v : -> Prop for each value v and equations

eq (< rho, v > |= w) = true if v = w .

that define L¢({p,v)) = {v} and L¢(c) empty otherwise.

4.2 General Representability Results

What is the point of using rewrite theories to specify Kripke structures? It is a logical point:
in this way, we have at our disposal two logics to specify a system and its predicates, namely
membership equational logic to specify the data type of states and its atomic propositions,
and rewriting logic to specify the system’s transitions. This is quite useful for reasoning about
the properties of a system so specified. For example, when doing deductive reasoning about
temporal logic properties we can use a host of inductive equational techniques combined with
temporal logic reasoning to prove that certain formulas hold. Likewise, for model checking it
is possible to specify at a high level many different Kripke structures as rewrite theories and
(assuming finitary reachability) to model check their properties in a tool like Maude’s LTL
model checker [18].

What is the generality of rewriting logic to specify Kripke structures? That is, can we
specify in this way any Kripke structure that we may care about? The answer is yes. Fur-
thermore, if the Kripke structure is recursive, then the corresponding rewrite theory will be
finitary and also recursive in a suitable sense.

This brings us to the notions of recursive transition system and Kripke structure. We use
the notion of recursive set and recursive function in the same sense as Shoenfield [41].

Definition 17. A transition system B = (B, —pg) is called recursive if B is a recursive set
and there is a recursive function next: B — Pun(B) (where Pan(B) is the recursive set of
finite subsets of B) such that a —p b iff b € next(a).

Definition 18. A Kripke structure B = (B,—g,Lg) is called recursive if (B,—pg) is a

recursive transition system, AP is a recursive set, and the function Lg: B x AP — Bool
mapping a pair (a,p) to true if p € Lg(a) and to false otherwise, is recursive.
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The above notions of recursive transition system and recursive Kripke structure capture
the intuition of systems for which we can effectively determine in a finite number of steps all
the one-step successors of a given state. This is a stronger notion than just requiring that the
transition relation —p be recursive, since then the set of next states of a given state would
in general only be recursively enumerable (in short, r.e.). Note that being a recursive Kripke
structure is a necessary condition for effectively model checking the satisfaction of temporal
logic formulas in an initial state. In general, however, recursiveness is not a sufficient condition
for effective model checking unless the set of states reachable from the given initial state is
finite.

By a well-known metatheorem of Bergstra and Tucker [2], recursive sets and recursive
functions coincide with those sets and functions that can be specified by a finite signature
2} and a finite set of Church-Rosser and terminating equations F. The underlying carrier
sets of the initial algebra T g are the desired recursive sets, and the operations of the
algebra provide the recursive functions. In the context of Kripke structures, this means that
if B = (B,—p,Lp) is a recursive Kripke structure, then B, AP, and Lp can always be
specified by a finite signature and set of equations. In our approach, this is accomplished by
specifying B as the carrier of a kind k& of an initial algebra T’z p with X finite and £ Church-
Rosser and terminating, and specifying Ly (which is denoted _ = _ in our terminology) in an
also Church-Rosser and terminating protecting extension (X’, E U D) D (X, E) in which the
state predicates I have been specified.

What about the specification of the transition relation —z? Here is where rewrite theories
come in.

Definition 19. Let R = (X, EU A, R, ¢) be a finitary rewrite theory such that all its rules
are of the form

A (VX)) E—t i N\pi=a A\ wis;, (1)

iel jeJ

() are admissible in the sense of [10]; that is, any extra variables not in vars(t) can only
be introduced incrementally by “matching equations™ in the condition, so that they are all
instantiated by matching.

We call R recursive if:

with \J;(vars(p;) U vars(q;)) U U, vars(w;) U vars(t') C vars(t), or more generally, the rules

1. there exists a matching algorithm modulo the equational azioms® A;

2. the equational theory (X, E U A) is (ground) Church-Rosser and terminating modulo A
[17]; and

3. the rules R are (ground) coherent [/3] relative to the equations E modulo A.

The last condition means that no rewrites are lost by reducing a term to its (unique
modulo A) canonical form cang,4(t) with respect to E before applying any of the rules.

Note first of all that if R is a recursive rewrite theory, then for any kind %k the transition
relation H;z’kg Ts/px X Ty g, is recursive. Indeed, given [u], [v] € T's/g 1, by coherence we

5 A matching equation, denoted p := ¢, in the above condition is such that p is a term involving
only constructor symbols so that, for 8 a ground irreducible substitution, 6(p) is also ground
irreducible. We allow extra variables in p, but when solving a condition in which ¢ is instantiated
by a substitution p we can instatiate the extra variables in p by matching p to cang(u(q)). An
example of a matching condition is given in the text that follows.

5 In the rewriting logic language Maude, the axioms A for which the rewrite engine supports matching
modulo are any combination of associativity, commutativity, and identity axioms for different
binary operators.
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have
U —>}37k v <= there exists w such that cang/(u) _)%M w and canga(w) = cang/a(v) .

Therefore, to decide if [u] =% ;. [v] we first reduce u to its canonical form cang,(u), and then
try to match any rule (f) in R to a subterm of cang(u). For each such matching substitution
0 modulo A, we then try to find a substitution p modulo A extending 6 to the variables in
vars(t') \ vars(t) (which may not be empty for admissible rules) and such that

EF N olpi) = pla) A\ plwy) : 55,

iel jeJ

which is a decidable problem given the assumption that E is Church-Rosser and terminating.
Because of the assumption that the extra variables in wvars(t') \ vars(t) are all introduced
incrementally in “matching equations” in the condition, and the existence of a matching
algorithm modulo A, there is only a finite number p1, ..., p, of substitutions extending ¢ and
satisfying the rule’s condition, and can be computed. Therefore we have a recursive function
next: T puar — Pan(Tx/pua,k). For example, to compute the successors of the term f(a)
by the rule

(V{x,y, Z}) f(x) - g(m7y7 Z) if h(yv Z) = h(l‘, b) )

where h is a binary operator with a commutativity attribute and h(y,z) := h(z,b) is a
matching equation, the substitution § = {z — a} would be first obtained. Variables y and z
would not be then instantiated, but since the rule is admissible and we are assuming that we
have an algorithm for matching modulo commutativity, from the instantiation of h(y, z) :=
h(z,b) with 6 it turns out that there are only two possible ways of assigning values to y and z,
giving rise to the substitutions p; = {z — a,y +— a,z — b} and ps = {x — a,y — b,z — a}.

The next states for rule (f) are then effectively describable as the canonical forms of the
one-step rewrites in which the subterm 6(t) of cang,4(u) is replaced by p;(t'). Therefore, as
already mentioned, given [u] € Ty /pua i, We have a recursive function nexrtr : Ts/puar —
Pen(Ts/EuAK)-

As a consequence, if R is recursive then 7(R)x = (Tw/puak, (—x,)") I8 a recursive
transition system. In addition, if the extension (X', EUD) D (X, E) is protecting with EU D
Church-Rosser and terminating, then C(R, k)7 is a recursive Kripke structure.

The converse also holds. We state and prove this result for recursive Kripke structures,
but the result and proof hold a fortiori for recursive transition systems.

Theorem 6. Let B = (B,—p,Lg) be a recursive Kripke structure. Then there is a recursive
rewrite theory R with state predicates I corresponding to those of B and a kind k such that
B is isomorphic to IK(R, k).

Proof. The case when B and the set I of atomic predicates are finite admits a much simpler
proof. We do in detail the hardest case in which both B and II are countably infinite. Without
loss of generality we may assume that B = II = IN. Also, without loss of generality we may
represent the recursive function next : B — Ppn(B) as a recursive function next : IN — IN,
using the fact that there is a recursive isomorphism Pg,(IN) =2 IN mapping each finite set
{n1,...,nk} with ny > ... > ng to the number 2™ + ... + 2™ and mapping @ to 0 (see
[39, Section 5.6]). By using 0 as false and s(0) as true, we may also assume without loss of
generality that the labeling function Lg is represented as a recursive function label : IN x
IN — IN. For later use we also include the recursive predicate even : IN — IN, mapping
odd numbers to 0 and even numbers to s(0), and the “division by two” recursive function
_/2:IN — IN. All these operations determine a computable X-algebra structure, say B, on
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the natural numbers. By the Bergstra-Tucker theorem [2], there is a supersignature X’ O X
and a finite set E of confluent and terminating equations such that we have an isomorphism
Tsi /gl = B, where Ty /|5 denotes the reduct of T'sy/p as a X-algebra. Furthermore, the
construction of T'vr /g in [2] ensures that the canonical term algebra Cansy: /E>» whose data
elements are the ground terms in E-canonical form and is isomorphic to T’z /g, has IN (in
Peano notation) as its set of underlying elements. That is, we have, not just an isomorphism,
but (assuming B is also in Peano notation) an identity of computable X-algebras Cany: /p|s =
B. We now extend the unsorted signature X’ (whose only sort we may call Nat) to a many-
sorted” signature by adding two new sorts Set and System, and adding the following signature
2 with a new constant ) : Set, and additional new operations:

(_) : Nat — System
{-} : Nat — Set
_U_: Set x Set — Set

decode : Nat — Set
map.s : Set — Set

We can then define the following equational theory (X' U 2,FE U G U A) with: (i) A the
associativity and commutativity axioms for _U _, together with the axiom of ) as its identity
element; and (ii) G the equations (for z,y variables of sort Nat, and S a variable of sort Set):

decode(xz) =P if =0

decode(x) = map.s(decode(x/2)) if s(y) := x A even(y) =0
decode(x) = {0} U map.s(decode(y/2)) if s(y) := x A even(y) = s(0)
map.s(0) =0
map.s({z}US) = {s(x)} U map.s(S).

First of all, note that since none of the operations in {2 has sort Nat and none of the
equations in A U G has sort Nat, we obviously have Tsiyq/pucualsr = Txr/p. Second, it
is easy to show that the equations G are quasi-decreasing modulo A (see [36] for a precise
definition of this notion) and therefore terminating modulo A. Third, we have:

Lemma 3. Whenever we have X U £2-terms t,u,v such that (viewing the equations E and
G as rewrite rules) t —p/a u —g/a v, then there exists a X U §2-term w such that
t—qgaw —)E/A V.

Proof. Observe that this situation can only arise for terms of sort Set. Then consider that:
(i) any such term is always of the form 6(C) with C an 2-term, and dom(0) = {x1,...,z,} a
set of variables of sort Nat which do not appear repeated in C, furthermore, 6(z;) is always
a X'-term; (ii) rewrites of §(C) with E modulo A do not change C, but can only change 6
to, say, 0'; (iii) since all lefthand sides in G are {2-terms, rewrites of 8(C) with G modulo A
always happen inside C; and (iv) since F is confluent and terminating, and the rules G form
a strongly deterministic 3-CTRS (see [36]) where the conditions only involve X’-terms, if the
condition for the application of a rule in G holds for a substitution § and § —7, /A 0’, then
the same condition also holds for 6.

As a consequence of Lemma 3, — /4 “quasi-commutes” with — g/ 4 in the sense of [1].
But then, by the fact that both — /4 and — /4 are terminating, and Lemmas 1-2 in [1],
we have that —guE/a is terminating.

" By identifying its sorts with kinds, we can view any many-sorted signature as the special case of
a signature in membership equational logic with only kinds and no sorts.
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To see that —@up/4 is also confluent, we can proceed as follows. First, note that all con-
ditional critical pairs for G are joinable (the only conditional critical pairs arise for decode,
and they are all infeasible, since the conditions of the rules for decode are mutually exclu-
sive). Therefore, by Theorem 7.3.2 in [36], — /4 is confluent. To obtain the confluence
of —gup/a from those of — /4 and — g4, first observe that by Lemma 3 above and
Lemma 1 in [1], the relation (G/A)/(E/A) =——%/4 © —G/A © — 4 is terminating. Note
also the trivial identity —¢, p/ 4=—7% o((G/A)/(E/A))*. We can now obtain the desired
confluence of — g a by case analysis on the two rewrites using —¢, /A that must be
joined. The case where both are of the form —7, /A follows from the confluence of E. The
case where one is of the form —7, , and another of the general from —¢, /A follows easily
from Lemma 3 and the following additional lemma:

Lemma 4. Whenever we have XU 2-terms t,u,v such that uw gjqa<—t — g a v, then there
erists a XU 2-term w such that u —g/a w *E/A<— V.

Proof. As before, this can only happen if ¢ is of the form ¢t = 0(C), with C an {2-term and
dom(8) = {x1,...,x,} a set of variables of sort Nat which do not appear repeated in C, and
O(z;) a X'-term for 1 < ¢ < n. Since rewrites of §(C') with E modulo A do not change C,
but can only change 6 to, say, ¢, in the rewrite t — g, 4 u there will be exactly one variable,
say x, such that 6(zy) —pg/a 7, so 0’ agrees with 6 everywhere except for mapping xj, to
r, and we have u = §’(C). The key point now is to realize that the lefthand side of the rule
in G used in the rewrite £ —¢g,4 v, which is an §2-term, still matches the context C' in the
exact same redex position in the term wu, with the only difference that the substitution that
now has to be used to check the rule’s condition (if it has a condition) is €’ instead of 6. But
since F is confluent and terminating, and the rules G form a strongly deterministic 3-CTRS
where the conditions only involve X’-terms, if the condition for the application of a rule in
G holds for substitution § and § — /4 @', then the same condition also holds for 6. The
desired term w is then the term obtained by rewriting u using the given rule in G at the exact
same redex position in C' and matching substitution #’. It is then trivial to show that we also
have v —7, /A W- a

Finally, the case where both rewrites are of the form ((G/A)/(E/A))* can be proved by
an easy noetherian induction on the relation (G/A)/(E/A), using Lemma 3 to fill in all the
diamonds in the noetherian induction step.

In summary, therefore, we have constructed a confluent and terminating equational theory
(XU, EUGUA) such that Cansuo/pucuals = B, where B is the computable algebra
corresponding to the state set of our original Kripke structure and including the next and
label functions. So all we have left to do is to extend (X' U 2, E UG U A) to a rewrite theory
R=(2"UN,EUGUA,R,¢) which specifies a Kripke structure isomorphic to B = (B, —p
, Lp). This is now easy. The kind/sort of states is System, and R consists of the single rule:

(x) — (y) if {y} U S := decode(next(z))

which, up to the bijective change of representation (x) — =z, exactly captures the transition
relation —pg. We still need to check that the rules R are ground coherent with respect to
the equations. We define ¢ so that all arguments are frozen for all operators, except for the
successor function, where ¢(s) = @). Ground coherence is now easy to check, because the only
ground terms that can make an R-transition are terms of the form (), with ¢ of sort Nat. But
then, of course, if ¢’ is the E-canonical form of ¢, both decode(next(t)) and decode(next(t'))
have the same canonical form; which easily yields the desired coherence, since any element
{w} that we could choose by associative-commutative matching in some partially simplified
version of the term decode(nezt(t)) has a canonical form appearing among the elements of
the set that is the canonical form of decode(next(t')). O
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At the price of allowing infinite signatures and losing computability, there is a general
representability result stating that any transition system and any Kripke structure can be
modeled in rewriting logic. Indeed, given a transition system B = (B, —g) we can define Rp
with a single kind State, X1 state = B and rules a — b iff @ —g b. And if we extend B to a
Kripke structure, the labeling function L can be modelled with equations (a |= p) = true if
p € Lp(a), and (a = p) = false if p ¢ Lp(a).

The interesting point, however, is not whether we can or cannot represent any Kripke
structure: we always can. Instead, the point is that we have a general way of defining any
recursive Kripke structure by means of a finitary rewrite theory that is Church-Rosser, ter-
minating, and coherent.

As we will see in Section 5, similar remarks apply to simulations as well. Thus, we will
have categories of rewrite theories that can represent all transition systems (resp. Kripke
structures) and all simulations between them, and categories of recursive rewrite theories
that can represent all recursive transition systems (resp. Kripke structures) and all recursive
maps between them.

5 Algebraic Simulations

We have already noted that, in order to reason about computational systems, these can be
abstractly described by means of transition systems and Kripke structures. As explained in
the previous sections, rewriting logic can be used to specify both kinds of structures in a
natural and modular way. Our goal now is to study how to relate different rewrite theories
and how to lift to this specification level all the previous results about simulations of Kripke
structures. For this, we consider four increasingly more general ways of defining simulations
for rewrite theories specifying a concurrent system:

1. The easiest way of defining a simulation map for a rewrite theory (X, E, R, ¢) is by means
of an equational abstraction [33], which consists in simply adding new equations, say E’,
to get a quotient system specified by (¥, EU E'| R, ¢).

2. The previous method can be generalized by considering, instead of just theory inclusions
(X,E) C (X,EUE'), arbitrary theory interpretations H : (¥, E) — (X', E') allowing
arbitrary transformations on the data representation of states. (We gave a presentation
of these in [27].)

3. A third alternative consists in defining a simulation map between rewrite theories R and
R’ directly at the level of their associated Kripke structures by means of equationally-
defined functions.

4. Finally, the most general case is obtained by defining arbitrary simulations between
rewrite theories R and R’ by means of rewrite relations.

For each of the increasingly more general ways above of defining simulations, there are
of course associated correctness conditions that must be verified. For equational abstractions
they are considered in detail in [33,34] and for theory interpretations in [27]; here we give a
more comprehensive account of case (2), and study also the remaining cases (3) and (4).

5.1 Simulation Maps as Equationally-Defined Functions

In this section we spell out the details for the categories mentioned at the end of Section 4.2.
Let us first consider transition systems. For that, we define a category SRW Th whose objects
are pairs (R, k), with R a rewrite theory and & a distinguished kind in R. Objects in the
subcategory RecSRWTh are also pairs (R, k) but now, since we are interested in recursive
structures, we require the rewrite theory R to be recursive.
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What about morphisms? At the end of Section 4.2 we showed that any transition system
can be defined in rewriting logic. Likewise, any stuttering map of transition systems (and in
particular any non-stuttering one) h : A — B can be equationally defined in a protecting
extension of R4 and Rg by simply adding an equation h(a) = b for each a € A which is
mapped to b by h; therefore, the following definition does not involve any loss of generality.

Definition 20. A morphism (R1,k1) — (R2,k2) in SRWTh, called an algebraic stutter-
ing map of transition systems, is a stuttering map h : T(R1)k, — T (Ra)k, such that there
exists a protecting theory extension (£2,G) containing the equational parts of R1 and Ra in
which h can be equationally defined through an operator h : ki — kb (where the primes
indicate the corresponding names for the disjoint copies of the kinds).

Note that we only require the existence of ({2, G); we do not need to choose any particular
such extension to define the category. Morphisms in RecSRWTh are defined similarly, but
now we further require h to be defined by a finite set of Church-Rosser and terminating
equations in a finitary extension (§2, G).

We can now show that the construction defined in Section 3.2 that associates a transition
system to a rewrite theory with a chosen kind of states is actually a functor. More precisely,
we define 7 : SRWTh — STSys as follows:

— for objects, T(R,k) =T (R)x;
— for morphisms h : (R1,k1) — (Ra, k), T(h) = h.

Let us denote by RecSTSys the category whose objects are recursive transition systems
and whose morphisms h : A — B are stuttering maps of transition systems such that h is
recursive; the following result is an immediate consequence of the definitions.

Proposition 7. The functor T : SRWTh — STSys is surjective on objects, full, and
faithful, with the obvious restriction for non-stuttering maps. Similarly, T : RecSRWTh —
RecSTSys is surjective on objects up to isomorphism, full, and faithful (again, with the
obvious restriction).

Let us now turn our attention to Kripke structures. For that we need to consider a theory
BOOLL extending BOOL with two new kinds, State and Prop, and a new operator _ |= _:
State Prop — Bool.

Objects in the category SRWTh. will be rewriting logic specifications of Kripke struc-
tures, and arrows will define stuttering maps between them. As already explained, we have
to specify both the transition system and the semantics of atomic propositions. Therefore,
objects in SRWThy will be pairs consisting of a rewrite theory specifying the underlying
transition system, and an equational theory specifying the relevant atomic propositions. We
will add, however, a third component whose purpose will be to distinguish the chosen kind
of states and also to make sure that the theory BOOL remains fixed along simulations. More
precisely, objects in SRWThy are given by triples (R, (X", E U D), .J) where:

1. R=(X,E,R,¢) is a rewrite theory specifying the transition system.

2. (¥,FE) C (X', EUD) is a protecting theory extension, containing and protecting also the
theory BOOL of Booleans, that defines the atomic propositions satisfied by the states.
We define IT C X' as the subsignature of operators of coarity Prop.

3. J : BOOL. — (X',E U D) is a membership equational theory morphism [30] that
selects the distinguished kind of states J(State), and such that: (i) it is the identity when
restricted to BOOL, (ii) J(Prop) = Prop, and (iii) J(_ |= - : State Prop — Bool) = _ = _:
J(State) Prop — Bool.
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As explained in [33,34] we can assume, without loss of generality, that R is J(State)-
deadlock free, that is, that the relation H%,J(Smte) is total.

Objects in the subcategory RecSRWThy. are also triples (R, (X', EUD), J) but now we
require the rewrite theory R to be recursive and the protecting extension (X’, EUD) D (X, E)
to be finitary, Church-Rosser, and terminating.

What about morphisms? Again, any stuttering (and non-stuttering) map of Kripke struc-
tures («, h) : A — B can be equationally defined in a protecting extension of R 4 and Rz,
so the following definition does not involve any loss of generality.

Definition 21. A morphism (R, (X1, E1UD1),J1) — (Ra, (X5, E2UD>), Jo) in SRWThy,
called an algebraic stuttering map, is a pair (o, h) such that:

1. (o, h) : K(Rq, Ji(State)) g, — K(Ra, J2(State))m, is a stuttering map of Kripke struc-
tures.

2. There exists a theory extension (§2, G) containing and protecting disjoint copies of (X7, F1U
Dy) and (X4, Eo U Dy) in which o and h can be equationally defined through operators
a : Prop, — StateFormy and h : Ji(State); — Jz2(State)s in §2; the subscripts 1, 2
indicate the corresponding names for the disjoint copies of the kinds, and StateForms is
a new kind for representing state formulas over Props.

Note again the existential quantifier for the extension ({2, G).

Since, by the general representability result, we can always find an extension (£2,G) in
which the functions « and h can be equationally defined, the category is well-defined, because
for each composition we can do the same.

The important point is that if & and h are recursive, and the structures (R, J1 (State)) m,
and K(Rz, J2(State)) , are objects in RecSRWThy, then by the metaresult of Bergstra and
Tucker [2] we can always find a finitary extension ({2, G) that is both protecting of the pieces
and Church-Rosser and terminating, and in which both « and h can be specified by means of
Church-Rosser and terminating equations. Therefore, we define morphisms in RecSRWThy_,
called recursive algebraic stuttering maps, to be pairs («, h) as before, but now with the extra
requirement that both « and h can be defined by means of Church-Rosser and terminating
equations in the extension ({2, G).

Of course, all these constructions can also be applied to non-stuttering simulations, leading
to categories RWTh and RecRWTh with subcategory inclusions:

RecRWThh . RecSRWTh‘:

| |

RWTh. ¢~ SRWTh,

We can now show that the construction defined in Section 4.1 that associates a Kripke
structure to a rewrite theory with a chosen kind of states and chosen state predicates is a
functor. More precisely, we define K : SRWTh,_ — KSMap as follows:

— for objects, K(R, (X', EU D), J) = K(R, J(State));
— for morphisms (o, h) : (Ry, (X1, E1UD1),J1) — (Ra, (X%, E3UDs), J2), K(a, h) = (a, h).

Now, if we denote with RecKSMap the category whose objects are recursive Kripke

structures and whose morphisms are stuttering maps («, k) : A — B such that « and h are
both recursive functions, the previous discussion can be summarized as:
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Proposition 8. The functor K : SRWTh — KSMap is surjective on objects, full, and
Jaithful, with the obvious restrictions for non-stuttering maps. Similarly, K : RecSRWTh —
RecKSMap is surjective on objects up to isomorphism, full, and faithful (again, with the
obvious restrictions). Graphically:

RecSRWTh. —— SRWTh

i/c iIC
RecKSMap ——— KSMap

The fact that K is surjective on objects, full, and faithful constitutes a general repre-
sentability result, stating that all (vesp. all recursive) Kripke structures and stuttering maps
can be represented by rewrite theories and equationally-defined functions (resp. recursive
rewrite theories and recursive equationally-defined functions).

An interesting question is how to verify that an algebraic stuttering simulation is correct,
that is, identifying a set of proof obligations ensuring that equationally-defined functions «
and h define in fact an algebraic stuttering simulation; some such criteria are discussed in
Section 6.

5.2 Simulations as Rewrite Relations

The previous construction, though already very general and applicable to many situations,
restricts us to work only with functions. This drawback can be avoided by a simple extension
of the ideas introduced above. Let us consider only the case of Kripke structures, bearing
in mind that everything applies to transition systems as well by just forgetting about the
additional structure given by the atomic propositions.

We define a category SReIRWTh,_ whose objects are those of SRWTh and with
arrows as described in the following definition.

Definition 22. A morphism (R1, (X, F1UD1),J1) — (R, (X5, B2 U Ds), Jo) in the cate-
gory SReIRWThy, called an algebraic stuttering simulation, is a pair (o, H) such that:

1. (o, H) is a stuttering simulation of Kripke structures (o, H) : IKC(Ry, J1(State)) g, —
]C(RQ, JQ(SL‘CLL‘@))HQ .

2. There exists a rewrite theory extension Rs3 containing and protecting disjoint copies of
(X1, E1 U D1, Ry) and (X}, E3 U Do, Rs) in which a can be equationally-defined through
an operator o : Prop, — StateForms, and H is defined by rewrite rules involving an
operator H : Jy(State); Jo(State)s — Bool such that xHy iff Rs - H(x,y) — true.
Here the subscripts 1, 2 indicate the corresponding names for the disjoint copies of the
kinds, and StateForms is a new kind for representing state formulas over Prop,.

The subcategory RecSRelRWTh of recursive rewrite theories and r.e. algebraic stut-
tering simulations is defined analogously, but we now require the theory extension R3 to
be finitary and admissible in the sense of [10]. That is, R3 satisfies requirements similar to
those of a recursive rewrite theory, but the conditions of the rules can now contain rewrites
as long as the only new variables in their lefthand sides not present in the rule’s lefthand side
are contained in the righthand sides of previous rewrite conditions (in a left-to-right order of
the conditions), or in matching equational conditions. Note that, due to the Turing-complete
nature of rewriting, this is equivalent to requiring the relation H to be r.e.

Remark 4. It is worth mentioning that we only consider recursive functions in RecSRWTh_,
whereas we now allow arbitrary r.e. relations in RecSRelRWTh,. This seems a natural
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extension to us, since in general the composition of recursive relations is not recursive, whereas
the composition of r.e. relations is r.e.

Let us denote by RecKSSim the category of recursive Kripke structures and stuttering
simulations (o, H) : A — B such that « is recursive and H is r.e. The forgetful functor K is
extended in the obvious way to the new categories, and we have the following result.

Proposition 9. With the above definitions, K : SReIRWTh — KSSim is surjective on
objects, full, and faithful, and K : RecSRelRWTh — RecKSSim is surjective on objects
up to isomorphism, full, and faithful. Graphically:

RecSRelRWTh ¢~ SRelRWTh_
K l/c
RecKSSim &—— KSSim

This is the most general representability result possible for stuttering simulations as we
have defined them. It shows that we can represent both Kripke structures and stuttering
simulations in rewriting logic, and can use rewriting logic and membership equational logic
to reason about them.

5.3 Some Examples

5.3.1 Semantics of a Functional Language. As mentioned in Section 3.3, a simple
functional language called Fpl is defined in [21] along with three different semantics: a quite
abstract evaluation semantics, a computation semantics, and a more concrete semantics which
uses a stack machine.

The executable specification in Maude of those three semantics is described in [42]. The
evaluation semantics is very abstract and uninteresting from a transition system point of
view: all expressions are evaluated in a single step. However, the other two semantics are
much more concrete, so that the evaluation of a single expression requires the execution of
several steps. Therefore, it makes sense to study the relationship between the executions in
each of them and express their agreement by means of a stuttering simulation.

A state of the stack machine, using Maude syntax, is a triple < ST, rho, e >, where ST is
a stack of values, rho is an environment assigning values to variables, and e is an expression.
A state for the computation semantics is a pair < rho, e >, with rho an environment and e
an expression. The transition relations

< ST, rho, e > — < ST’, rho’, e’> and < rho, e > — < rho’,e’ >

defined in [21] were translated to rewriting logic in [42]. They appear in Figures 2 and 3,
using Maude notation. Following [42], the righthand side of the transition relation in the
computation semantics, which only contains the numerical value in [21], is extended so as to
be able to define a transition system. Unlike [21,42], we do not consider functions.

These definitions give rise to two transition systems, S = (S5, —s) and C = (C, —¢), for
the stack machine and the computation semantics respectively. To prove the correctness of
the stack machine implementation relative to the computation semantics we show that there
exists a recursive algebraic stuttering simulation of transition systems i : S — C.

Intuitively, < empty, rho, e >, where empty is used both to represent the empty stack
and the environment that associates no value to any of the variables, should be related to
< rho, e >. Consider this derivation:
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< empty, empty, 2 + 3 > —s < empty, empty, 2 . 3 . + >
—s < 2, empty, 3 . + >
—s< 3 . 2, empty, + >
—s < 5, empty, empty >

The second, third, and fourth states in the derivation carry exactly the same information as
the first one, though in a different order. The rules used to reach them are examples of what
are called analysis rules in [21]. Tt seems appropriate, then, to relate them to the same state
as the first one, namely < empty, 2 + 3 >. The situation is different for the last state: some
information has been lost, and it seems more appropriate to relate this state to < empty, 5 >.
This last step is an example of an application rule.

So we define h : S — C by h(a) = < rho, e > if a can be obtained from < empty,
rho, e > by zero or more applications of the analysis rules for the stack machine together
with Valm and Locm2. Note that h is a function precisely because not all of the rules can
be applied. Also, h is partial: it is only defined for reachable states, which constitute a full
substructure of S where h is total (recall the discussion before Definition 5 on page 4).

Alternatively, by “undoing” the steps taken by the rules, h can be defined by means of
the following set of equations.

eq [Base] : h(< empty, rho, e>) = < rho, e > .
eq [Opm1] : h(< ST, rho, e . e’ . op . C >) = h(< ST, rho, e op e’ . C >)
eq [Opm1] : h(< ST, rho, be . be’ . bop . C >) = h(< ST, rho, be bop be’ . C >)
eq [Ifm1] : h(< ST, rho, be . if(e, e’) . C >) =
h(< ST, rho, If be Then e Else e’ . C >)
eq [Locm1] : h(< ST, rho, e. <x, e’> . C >) =
h(< ST, rho, let x = e in e’ . C >)
eq [Notm1] : h(< ST, rho, be . not. C >) = h(< ST, rho, Not be . C >)
eq [Eqmil] : h(< ST, rho, e . e’ . equal . C >) =
h(< ST, rho, Equal(e, e’) . C >)
eq [Locm2] : h(< ST, (x, v) . rho, e . pop . C >) =
h(< v . ST, tho, < x, e > . C >)
ceq [Valm] : h(< v . ST, rho, C >) = h(< ST, rho, v . C >) if not(enabled(C))
ceq [Valm] : h(< bv . ST, rho, C >») = h(< ST, rho, bv . C >) if not(enabled(C))

The auxiliary predicate enabled used in Valm checks that none of the other equations can be
applied.

Lemma 5. If h(< ST, rho, e . C >) =< rho, e’ >, then there exists a position p in e’
such that €'|, = e and, if e is not a value, then it is a subexpression that can be reduced in e’
in the next step with the rules of the computation semantics.

Proof. Note that the transition relation —gs is deterministic and that, given a state < ST,
rho, C >, there is a single way of undoing all the steps to reach a state of the form < empty,
rho, e >. Therefore, for the purpose of the proof we consider the equations defining h to be
oriented rules and proceed by induction on the number of steps used to reach < rho, e’ >.

When the number of steps is 1 we have h(< empty, rho, e >) — < rho, e > and the
result is trivial. Assume that n is greater than 1; we distinguish cases according to the equation
(seen as a rule) used for the first step.

— If the first equation Opm1 has been applied,

h(< ST, rho, el . e2 . op . C >) — h(< ST, rho, el op e2 . C >).
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— Computation semantics for Fpl arithmetic expressions.

rl [VarRc] : < rho, x > => < rho, rho(x) > .

rl [OpRc] : < rho, v op v’ > => < rho, Ap(op,v,v’) > .

crl [OpRc] : < rho, e op e’ > => < rho’, e’’ op e’ >
if < rho, e > => < rho’, e’’ >

crl [OpRc] : < rho, e op e’ > => < rho’, e op e’’ >
if < rho, e’ > => < rho’, e’’ > .

crl [IfRc] : < rho, If be Then e Else e’ > => < rho’, If be’ Then e Else e’ >
if < rho, be > => < rho’, be’ > .

rl [IfRc] : < rho, If T Then e Else e’ > => < rho, e > .

rl [IfRc] : < rho, If F Then e Else e’ > => < rho, e’ > .

crl [LocRc] : < rho, let x = e in e’ > => < rho’, let x = e¢’’ in e’ >

if < rho, e > => < rho’, e’’ > .
rl [LocRc] : < rho, let x = v in e’ > => < rho, e’[v / x] >

— Computation semantics for Fpl Boolean expressions.

rl [BVarRc] : < rho, bx > => < rho, rho(bx) > .

rl [BOpRc] : < rho, bv bop bv’ > => < rho, Ap(bop,bv,bv’) > .

crl [BOpRc] : < rho, be bop be’ > => < rho’, be’’ bop be’ >
if < rho, be > => < rho’, be’’ >

crl [BOpRc] : < rho, be bop be’ > => < rho’, be bop be’’ >
if < rho, be’ > => < rho’, be’’ > .

crl [NotRc] : < rho, Not be > => < rho’, Not be’ >
if < rho, be > => < rho’, be’ > .

rl [NotRc] : < rho, Not T > => < rho, F > .

rl [NotRc] : < rho, Not F > => < rho, T > .

crl [EqRc] : < rho, Equal(e,e’) > => < rho, Equal(e’’,e’) >
if < rho, e > => < rho’, e’’ >

crl [EqRc] : < rho, Equal(e,e’) > => < rho, Equal(e,e’’) >
if < rho, e’ > => < rho’, e’’ > .

crl [EqRc] : < rho, Equal(v,v’) > => < rho, T > if v = v’

crl [EqRc] : < rho, Equal(v,v’) > => < rho, F > if v =/= v’.

Fig. 2. Semantics rules for Fpl computation semantics.

By induction hypothesis, there is a position p such that e’|, is el op e2 and then our

required position is p.1. In addition, since el op e2 is not a value it can be reduced,

which implies that e’ is actually el op e2 and thus el can also be reduced if it is not a

value. The same reasoning applies to the other Opm1, Ifml, Notml, and Eqml equations.
— If Locml has been applied,

h(< ST, rho, el . < x, e2 > . C >) — h(< ST, rho, let x = el in e2 . C >).

By induction hypothesis, e’[, is let x = el in e2 and we can take p.1 as the desired
position.
— For Locm2,

h(< 8T, (x,v). rho, e . pop . C >) — h(< v . ST, rho, < x, e > . C >)
— h(< ST, rho, v . <x, e > . C>)
— h(< ST, rho, let x = v ine . C >).

By induction hypothesis, e’|, is let x = v in e and we can take p.3.
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— Analysis rules for the stack machine.

rl [Opmi] < ST, rho, e op e’ . C>=>< ST, rho, e . € . op . C> .
rl [Opmi] < ST, rho, be op be’ . C > => < ST, rho, be . be’ . bop . C > .
rl [Ifm1] : < ST, rho, If be Then e Else e’ . C > =>
< ST, rho, be . if(e, e’) . C > .
rl [Locml] : < ST, rho, let x = e in e’ . C > =>
< ST, rho, e . <x, e > . C> .
rl [Notml] : < ST, rho, Not be . C > => < ST, rho, be . not . C > .
rl [Egmi1] : < ST, rho, Equal(e, e’) . C > => < ST, rho, e . e’ . equal . C > .

— Application rules for the stack machine.

rl [Opm2] : < v’ . v . ST, rho, op . C > => < Ap(op,v,v’) . ST, rho, C > .
rl [Opm2] : < bv’ . bv . ST, rho, bop . C > => < Ap(bop,bv,bv’) . ST, rho, C > .
crl [Varm] : < ST, rho, x . C > => < v . ST, rho, C >
if v := lookup(rho,x)
crl [Varm] : < ST, rho, bx . C > => < bv . ST, rho, C >
if bv := lookup(rho,bx)
rl [Valm] : < ST, rho, v.. C > =>< v . ST, rho, C > .
rl [Valm] : < ST, rho, bv . C > => < bv . ST, rho, C > .
rl [Notm2] : < T . ST, rho, not . C > => < F . ST, rho, C > .
rl [Notm2] : < F . ST, rho, not . C > => < T . ST, rho, C > .
crl [Eqm2] : < v . v’ . ST, rho, equal . C > => < T . ST, rho, C >
if v = v’
crl [Eqm2] : < v . v’ . ST, rho, equal . C > => < F . ST, rho, C >
if v =/= v’ .
rl [Ifm2] : < T . ST, rho, if(e, e’) C
rl [Ifm2] : < F . ST, rho, if(e, €’) . C > => < ST, rho, e’ . C > .
rl [Locm2] : < v . ST, rho, < x, e > . C > =>< 8T, (x,v) . rho, e . pop . C > .
rl [Pop] : < ST, (x,v) . rho, pop . C > => < ST, rho, C > .

=> < ST, rho, e . C > .

vV VvV Vv

Fig. 3. Semantics rules for Fpl stack machine.

— For Valm, we have h(< v . ST, rho, e . C >) — h(< ST, rho, v . e . C >). Now,
the only rules that can be applied to the last term are Opm1 and Eqm1; Valm is not a valid
alternative because it would give rise to three consecutive expressions, which is not possible
since there are no ternary operators. Assume that Eqml is used (analogously for the two
Opm1 rules): C is of the form equal . C’ and h(< ST, rho, v . e . equal . C’ >) —
h(< ST, rho, Equal(v,e) . C’ >). Now, by induction hypothesis, e’|, is Equal(v,e)
and the required position is p.2. ad

Theorem 7. The function h: S — C defines a recursive algebraic stuttering simulation of
transition systems.

Proof. We will use the finitary characterization of stuttering simulations given in Defini-
tion 15. Since h is a (partial) function, it is only necessary to define a function p : SxC — NN,
and we assign to u(a,c) the length of the longest path starting at a that only uses analysis
rules, Valm, or Locm2.

Assume that a —gs o’ and that h(a) = c. If @’ has been obtained by applying an analysis
rule, Valm, or Locm2, then h(a’) = ¢ and p(a’,¢) < p(a, ¢). Otherwise, we must find a ¢ such
that ¢ —¢ ¢’ and h(a’) = ¢/; we distinguish cases depending on the rule used.
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— Opm2. In this case, a is < v> . v . ST, rho, op . C > and therefore h(a) is equal to
h(< ST, rho, v op v’ . C >) =< rho, e > where, by Lemma 5, there is a position p
in e such that e[, is v op v’ and v op v’ is a subexpression of e that can be reduced
by the rules of the computation semantics in the next step. We can then take ¢’ to be
< rho, e[Ap(op,v,v’ )]p>. Similarly for Notm2, Eqm2, and Ifm2.

— Varm. Then a must be equal to < ST, rho, x . C >and h(a)to< rho, e >withe|, =x
an expression in e that can be reduced. Thus, we can take ¢’ to be < rho, e [rho(x)]1,>.

— Pop. In this case a must be of the form < ST, (x,v) . rho, pop . C > The only
equation that applies to h(a) is Valm, and therefore there exists a value v’ such that
ST is v’ . ST’. Applying now the other equations it turns out that h(a) is equal to
h(< ST’, rho, let x = v in v’ . C >), that has to be equal to < rho, e > with
el[p =1et x = v in v’ a subexpression of e that can be reduced. We now take ¢’ to be
< rho, el[v’],>.

Therefore, the conditions of Definition 15 are satisfied and, by Theorem 5, h is a stuttering
simulation of transition systems. It is also clear that the equations above defining h are
Church-Rosser and terminating, and therefore h is a recursive algebraic stuttering simulation
of transition systems. a

Note that h is not a bisimulation. In the computation semantics, for an expression e op
e’ we can choose whether to evaluate e before e’ or vice versa, whereas the stack machine
always evaluates e first. That means that, for example, the transition

< empty, (1 +2) + (3 +4) >—>< empty, (1 +2) +7>

cannot be simulated by the stack machine.

The simulation h can be lifted to the level of Kripke structures. For that, we consider as the
set AP of atomic propositions the set of all posible values, and extend the transition systems
S and C with Lg(< empty, rho, v >) = Ls(< v, rho, empty >) = {v}, L¢(< tho,v >) =
{v} and both Ls(a) and L¢(c) are empty otherwise. Then, by the preservation result in
Theorem 3, for all expressions e and environments rho,

C,< rho, e >= AFv = §,< empty, rho, e >} AFv.

That is, S is a correct implementation of C.

5.3.2 A Communication Protocol Example. If a communication mechanism does not
provide reliable, in-order delivery of messages, it may be necessary to generate this service
using the given unreliable basis. In [29] it is shown how this might be done, and we slightly
adapt here the proposed solution. Both the sender and the receiver keep a counter for syn-
chronization purposes; the sender releases a message together with such number (rule send)
and does not send another message until it receives an acknowledgment by the receiver. This
is the complete Maude module providing the rules implementing this idea.

mod PROTOCOL is
protecting NAT .
protecting QID .

sorts Object Msg Config .
subsort Object Msg < Config .
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op null :
op __

-> Config .
: Config Config -> Config [assoc comm id: null]

sorts Elem List Contents .
subsort Elem < Contents List

op empty : -> Contents .

ops a b c : -> Elem .

op nil : -> List

op _:_ : List List -> List [assoc id: nil]

op to:_(_,_) : Qid Elem Nat -> Msg .

op to:_ack_ :

op <_:

Qid Nat -> Msg .

Sender | rec:_, sendq:_ , sendbuff:_, sendcnt:_ > :

Qid Qid List Contents Nat -> Object

--- rec is the receiver, sendq is the outgoing queue, sendbuff
--- is either empty or the current data, sendcnt is the sender

—--- sequence number

op <_:

Qid Qid List Nat -> Object .

--- sender is the
-—-- and reccnt is

vars S R : Qid .
var E : Elem .
var C : Contents

--- rules for the

rl [produce-a]

< S : Sender
< S : Sender
rl [produce-b]
< S : Sender
< S : Sender
rl [produce-c]
< S : Sender
< S : Sender
rl [send] : < S :
=> < S :
(to:

rl [rec-ack]
<S :
(to:
<S

S ack M)

--- rule for the

rl [receive]

Receiver | sender:_, recq:_, reccnt:_ > :

sender, recq is the incoming queue,
the receiver sequence number

vars M N : Nat

var L : List
sender
rec: R, sendq: L, sendbuff: empty, sendcnt: N >
rec: R, sendq: L : a, sendbuff: a, sendcnt: N + 1
rec: R, sendq: L, sendbuff: empty, sendcnt: N >
rec: R, sendq: L : b, sendbuff: b, sendcnt: N +
rec: R, sendq: L, sendbuff: empty, sendcnt: N >
rec: R, sendq: L : c, sendbuff: c, sendcnt: N +

Sender | rec:
Sender | rec:
R (E,N))

Sender | rec: R, sendq:

=>

: Sender | rec: R, sendq:

sendbuff: (if

sendcnt: N > .

receiver

R, sendq: L, sendbuff: E, sendcnt:
R, sendq: L, sendbuff: E, sendcnt:

L, sendbuff: C, sendcnt: N >

L’
N == M then empty else C fi),
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< R : Receiver | sender: S, recq: L, reccnt: M > (to: R (E,N)) =>
(if N == M + 1 then
< R : Receiver | sender: S, recq: L : E, reccnt: M + 1 >

else

< R : Receiver | sender: S, recq: L, reccnt: M >
fi)
(to: S ack N)

endm

Under reasonable fairness assumptions (namely, the receiver won’t wait indefinitely for an
available message), these definitions will generate a reliable, in-order communication mecha-
nism from an unreliable one. The fault modes of the communication channel can be explicitly
modeled as in the following Maude module.

mod PROTOCOL-FAULTY is
including PROTOCOL .

op <_: Destroyer | sender:_, rec:_, cnt:_, cnt’:_, rate:_ > :
Qid Qid Qid Nat Nat Nat -> Object

var M : Msg . vars K N N’ : Nat .
var E : Elem . vars S R D : Qid .

rl [destroyi]
< D : Destroyer | sender: S, rec: R, cnt: N, cnt’: s(N’), rate: K >
(to: R (E,N)) =>
< D : Destroyer | sender: S, rec: R, cnt: N, cnt’: N’, rate: K > .
rl [destroy2]
< D : Destroyer | sender: S, rec: R, cnt: N, cnt’: s(N’), rate: K >
(to: R ack N) =>
< D : Destroyer | sender: S, rec: R, cnt: N, cnt’: N’, rate: K > .
rl [limited-injury]
< D : Destroyer | sender: S, rec: R, cnt: N, cnt’: 0, rate: K > =>
< D : Destroyer | sender: S, rec: R, cnt: s(N), cnt’: K, rate: K > .
endm

Messages may be destroyed by objects of class Destroyer. The first counter represents
the identifying number of the messages they can destroy, and the second one represents how
many more messages with that number they are still allowed to remove. The attribute rate
is used to reset the value of cnt’ once it reaches zero.

To check if messages are delivered in the correct order, we define a state predicate
prefix(S,R) that holds for a sender S and receiver R whenever the queue associated to
R is a prefix of that associated to S. This is done, both for PROTOCOL and PROTOCOL-FAULTY,
by means of the following operator:

op prefix : Qid Qid -> Prop .
var CO : Config .
eq < S : Sender | rec: R, sendq: L1 : L2, sendbuff: C, sendcnt: N >
< R : Receiver | sender: S, recq: L1, reccnt: M >
CO0 |= prefix(S, R) = true .
The new system will satisfy the same correctness conditions as PROTOCOL regardless of

messages being destroyed or arriving out of order. In particular, the initial state
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eq init = < ’A : Sender | rec: ’B, sendq: nil, sendbuff: empty, sendcnt: 0 >
< ’B : Receiver | sender: ’A, recq: nil, reccnt: 0 > .

should satisfy the formula AG prefix(’4, ’B). To prove it we define a stuttering simulation
H : K(PROTOCOL-FAULTY, Config)y — K(PROTOCOL, Config)yr,

where IT only contains the state predicate prefix. Given configurations (states) a and b
respectively in PROTOCOL-FAULTY and PROTOCOL, aH b iff:

— b is obtained from a by removing all objects of class Destroyer, or
— there exists a’ such that '’ Hb and a can be obtained from o’ by the rules that belong
only to PROTOCOL-FAULTY.

We can define H as a rewrite relation in an admissible rewrite theory extending PROTOCOL
and PROTOCOL-FAULTY. In this specification, the kinds of states have been renamed as Configl
and Config?2, and removeD and messages are auxiliary functions that, given a configuration,
remove all objects of class Destroyer and return all messages in it, respectively.

op H : Configl Config2 -> Bool .

op undo-dl : Qid Elem Nat -> Msg .
op undo-d2 : Qid Nat -> Msg .
op undo-injury : -> Msg .

rl [destroyl-inv]

< D : Destroyer | sender: S, rec: R, cnt: N, cnt’: N’ > undo-d1(R,E,N) =>

< D : Destroyer | sender: S, rec: R, cnt: N, cnt’: s(N’) > (to: R (E,N))
rl [destroy2-inv]

< D : Destroyer | sender: S, rec: R, cnt: N, cnt’: N’ > undo-d2(R,N) =>

< D : Destroyer | sender: S, rec: R, cnt: N, cnt’: s(N’) > (to: R ack N)
rl [limited-injury-inv]

< D : Destroyer | sender: S, rec: R, cnt: s(N), cnt’: K, rate: K >

undo-injury =>
< D : Destroyer | sender: S, rec: R, cnt: N, cnt’: 0 > .

crl H(C, C’) => true if removeD(C) = C’ .
crl H(C, C’) => true if M (to: R (E,N)) := messages(C’) /\

(to: R (E,N)) in messages(C) = false /\

C undo-d1(R,E,N) => C’’ /\ H(C’’, C’) => true .
crl H(C, C’) => true if M (to: R ack N) := messages(C’) /\

(to: R ack N) in messages(C) = false /\

C undo-d2(R,E) => C’’ /\ H(C’’, C’) => true .
crl H(C, C’) => true if C undo-injury => C’’> /\ H(C’’, C’) => true .

Theorem 8. H : JC(PROTOCOL-FAULTY, Config)y — K(PROTOCOL,Config)y is an r.e. al-
gebraic stuttering simulation.

Proof. H so defined clearly preserves the atomic propositions, because the value of the sender’s
and the receiver’s queues, sendq and recq, are not changed. Let R; be the set of rules in
PROTOCOL and let Ry be those added in PROTOCOL-FAULTY, and define u(a,b) to be the length
of the longest rewrite sequence starting at a using rules in Ry. Note that this is well-defined
because R is terminating. If aHb and a —>}%1 a’ then, since the Destroyer class plays no
role in Ry, it is b _’}21 b with o’ HY. And if a —>}{2 a’, by definition of H it is ' Hb and
p(a’,b) < p(a,b). Because of rule send there are no deadlocks in the system and hence

31



these two alternatives cover all possibilities. Therefore, by Theorem 5, H is a stuttering II-
simulation. And since the rules above defining H in rewriting logic are admissible, H is an
r.e. algebraic stuttering simulation. a

By Theorem 3, the existence of H shows that if AGprefix(’A, ’B) holds in PROTOCOL
then it must also hold in PROTOCOL-FAULTY. But we have not proved yet that the property
holds in PROTOCOL. For that, in [34,37] a finite abstraction

G : K(PROTOCOL, Config);; — K(ABS-PROTOCOL, Config) s

is defined for the case of two processes, and the fact that messages are delivered in order
is model checked in ABS-PROTOCOL; by composing G with H this also proves that the same
property is true in PROTOCOL-FAULTY.

5.3.3 A Simple Pipelined Machine. We consider here an example adapted from [24]
about the correctness of a pipelined machine.

The specification used to prove the correctness is an instruction set architecture (ISA).
An ISA state is a triple consisting of a program counter, a register file, and a memory where
(only) instructions are stored. Instructions consist of an operation code, the target register to
which the instruction applies, and two source registers; there are operation codes for addition,
subtraction, and a “do nothing” instruction called noop. In each step, the machine executes
the instruction pointed to by the program counter, and updates the program counter and the
register file accordingly.

We can represent an ISA machine in rewriting logic by means of a protecting theory
extension Rjga of the natural numbers used to represent the registers and their values. To
represent all elements of the machine we need the following operators:

subsort Register < RegFile .

op {_,_,_} : ProgramCounter RegFile Memory -> StateISA .
op inst : OpCode Nat Nat Nat -> Instruction .

ops add sub noop : -> OpCode .

op reg : Nat Nat -> Register .

op _;_ : RegFile RegFile -> RegFile [assoc comm]

op update : RegFile Instruction -> RegFile .

op cell : Nat Instruction -> MemCell .

op _:_ Memory Memory -> Memory .

op applyOp : OpCode Nat Nat -> Nat .

op getValue : RegFile Nat -> Nat .

Then, its behavior is governed by the rule
rl { PC, RF, cell(PC, I) : M } => { PC + 1, update(RF, I), cell(PC, I) : M } .
and the equations
eq update(reg(R1, V1) ; RF, inst(0C, R1, R2, R3)) =
reg(R1, applyOP(0OC, getValue(reg(R1l, V1) ; RF, R2),
getValue(reg(R1, V1) ; RF, R3))) ; RF .
eq getValue(reg(R, V) ; RF, R) =V .

eq applyOp(+, N1, N2) = N1 + N2 .
eq applyOp(*, N1, N2) = N1 * N2 .
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Following [24], we focus on the transition relation, forgetting about the atomic proposi-
tions.

The ISA is implemented by a micro architecture (MA) machine, a pipelined machine with
three stages. An MA machine state is a 5-tuple consisting of a program counter, a register file,
a memory, and two latches. During the fetch stage, the instruction pointed to by the program
counter is stored in the first latch. During the set-up stage, the instruction in the first latch is
passed to the second one together with the values for the source registers. In the write-back
stage, the instruction in the second latch is executed and the register file is updated.

Again, the MA can be represented in rewriting logic as a theory Rya protecting the theory
of the natural numbers. The operators needed include the ones introduced above except for
the constructor { }, together with the following ones:

-2 ==

subsort Instruction < Latchl .

op {,_,_,_,_}: ProgramCounter RegisterFile Memory Latchl Latch2 -> StateMA .
op emptyl : -> Latchl .

op empty2 : -> Latch2 .

op latch : OpCode Nat Nat Nat -> Latch2 .

op nextPC : StateMA -> ProgramCounter .

op nextRF : StateMA -> RegisterFile .

op nextM : StateMA -> Memory .

op nextLl : StateMA -> Latchl .

op nextL2 : StateMA -> Latch2 .

op stalled : Latchl Latch2 -> Bool .

The behaviour of the machine is given by the rule
rl S => { nextPC(S), nextRF(S), nextM(S), nextL1(S), nextL2(S) } .

where S is a variable of sort StateMA. If no stall occurs the program counter is incremented;
otherwise it remains fixed. A stall happens when both latches are nonempty and the target
register of the second latch is one of the source registers in the first one.

eq nextPC({ PC, RF, M, L1, L2 }) = PC if stalled(L1l, L2) = true .
eq nextPC({ PC, RF, M, L1, L2 }) = PC + 1 if stalled(L1l, L2) = false .
eq stalled(emptyl, L2) = false .
eq stalled(L1l, empty2) = false .
eq stalled(inst(0C, R1, R2, R3), latch(0OC’, R, N1, N2)) =
(R == R2) or (R == R3)

The memory remains fixed throughout the execution,
eq nextM({ PC, RF, M, L1, L2 }) = M .

and the register file is updated with the value resulting from executing the instruction in the
second latch, whenever this is not empty:

eq nextRF({ PC, RF, M, L1, empty }) = RF .
eq nextRF({ PC, reg(R, V) ; RF, M, L1, latch(0OC, R, N1, N2) }) =
reg(R, applyOp(0C, N1, N2)) ; RF .

If there is no stall, the first latch is updated by fetching from the memory the instruction
pointed to by the program counter.
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ceq nextL1({ PC, RF, cell(PC, I) : M, L1, L2 }) =1
if stalled(L1, L2) = false .
eq nextL1({ PC, RF, M, L1, L2 }) = L1 if stalled(L1l, L2) = true .

Similarly, if there is no stall the second latch is updated by passing the instruction in the first
one together with the values in the source registers.

ceq nextL2({ PC, RF, M, emptyl, L2 }) = empty2 if stalled(L1l, L2) = false .
ceq nextL2({ PC, RF, M, inst(0C, R1, R2, R3), L2 }) =

inst(0C, R1, getValue(RF, R2), getValue(RF, R3))

if stalled(L1, L2) = false .
eq nextL2({ PC, RF, M, L1, L2 }) = empty2 if stalled(L1l, L2) = true .

We have just given the specifications in rewriting logic of both ISA and MA. Now we
want to relate them by means of a recursive algebraic stuttering map of transition systems
(Raa, [State]y,) — (Risa, [State]ig, ). Note the direction of the arrow, from the imple-
mentation to the specification.

Instructions in ISA are executed immediately, while in MA they go through three different
stages; therefore, the simulation will necessarily be a stuttering one. Given an MA machine
state, to get an ISA state we just have to forget the information in the latches. Note, however,
that the program counter in the MA machine points to the next instruction to be fetched,
so that now that we are removing the instructions already fetched in the latches we have to
decrease the program counter accordingly.

The simulation can then be specified in the disjoint union of the rewrite theories Riga
and Rya. The program counter is appropriately updated by an operator

op commit : StateRA -> ProgramCounter .
defined by the equations

eq commit({ PC, RF, M, emptyl, empty2}) = PC .

eq commit({ PC, RF, M, inst(0C, R1, R2, R3), empty2}) = PC - 1 .

eq commit({ PC, RF, M, emptyl, latch(0OC, R, N1, N2) }) = PC - 1 .

eq commit({ PC, RF, M, inst(0C, R1, R2, R3), latch(0OC, R, N1, N2) }) = PC - 2 .

Finally, the map is defined through an operator
op sim : StateMA -> StateISA .
and the equation
eq sim({ PC, RF, M, L1, L2 }) = { commit({ PC, RF, M, L1, L2 }, RF, M) } .

That this indeed defines a recursive algebraic stuttering map of transition systems follows by
adapting the proof in [24].

Theorem 9. The operator sim specifies a recursive algebraic stuttering map of transition
systems, sim : T (RuA )stateya — 7 (RISA)Statersa -

5.4 Theoroidal Simulation Maps

At the beginning of Section 5 we indicated that the equational simulations introduced in [33]
can be generalized either by considering theory interpretations or, more generally, equationally
defined functions or rewrite relations. The previous sections have been devoted to present
the more general of these cases. However, it is not always necessary to use that greater
generality: there are many interesting examples that can be explained by means of just theory
interpretations, as first presented in [27]; to them we turn now our attention.
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5.4.1 Generalized Signature Morphisms. The first thing to do is to make precise the
meaning of theory interpretation. The idea is to use the standard concepts of signature and
theory morphism. However, as we shall see in some of the examples below, the usual definition
of signature morphism is sometimes not expressive enough. For this reason we introduce the
following generalization of the concept of signature morphism in which a kind or an operator
can be erased.

Definition 23. Given two membership equational signatures X = (K, X, S) and X' = (K', X",
S"), a generalized signature morphism H : X — X' is specified by:

— partial functions H : K — K' and H : S — S’ such that, for all sorts s € X, if H(s)
is defined so is H([s]) and H([s]) = [H(s)].

— a partial function H assigning, to each f € Xy, .k such that H(k) is defined, a X’-
term H(f) of kind H(k) such that vars(H(f)) C {x;, : H(ki,),...,x;,, : H(k;,, )}, where
kijy... ki is the (possibly empty) subsequence of ki, ...,k determined by those k; such
that H(k;) is defined. Otherwise, if H(k) is undefined, so is H(f).

All standard constructions and results about signature morphisms apply to these general-
ized ones as well. Given H : ) — Y’ and a X’-algebra A, its reduct Uy (A) over X is defined
by:

— For each kind k, Un (A)r = Ay if H(k) is defined; otherwise Uy (A)r, = {*}.

— For each sort s, Up(A)s = Ap(s) if H(s) is defined; otherwise Ug(A)s = {*}.

— For each operator f : ki...k, — k, if k;,, ..., k;,, is the subsequence of those kinds in
ki,...,k, for which H is defined,

Tm

Un(A)s(ar,. .. an) = AH(f)(ail,...,aim);

otherwise
Un(A)s(ar,...,an) = *.

Given generalized signature morphisms F : X — Y’ and G : X/ — X", their composi-
tion G o F is defined for a kind k only if both F(k) and G(F'(k)) are defined, and then it is
(Go F)(k) = G(F(k)); analogously for a sort s and an operator f.

Generalized signature morphisms can also be extended homomorphically to terms, but
note that for ¢ of kind k, if H (k) is not defined then H () is not defined either. This translation
extends to formulas in the expected way, where by convention H(t =¢') = H(t:s) =T if H
is not defined for the kind of ¢ (which is the same as that of ¢ and s). Our desired general
notion of “theory interpretation” is then captured by the following:

Definition 24. Given two membership equational theories (X, E) and (X', E'), a generalized
theory morphism (7esp. a generalized theory morphism with initial semantics) H : (X, E) —
(X' E") is a generalized signature morphism H : ¥ — X' such that for each ¢ € E,
E' = H(p) (resp. Tsrypr = H(p)).

Note that, since Ts /g |= E’, each generalized theory morphism is a fortiori a generalized
theory morphism with initial semantics, but not conversely. For example, if (X, E) is the
theory with one sort, Nat, a binary operator +, and the equation (V{z,y : Nat}) x4y = y+uz,
(X', E') is the usual equational definition of addition in Peano arithmetic, and H is the
obvious signature inclusion, then we have T/ p = (V{z,y : Nat})z +y = y + x, but
E' ¥ (Wz,y: Nath) e +y=y+ .

Again, generalized theory morphisms compose and, together with membership equational
theories, give rise to a category GThygy,.

The new feature of generalized signature morphisms, which is inherited by generalized
theory morphisms, is that kinds and operators can be removed. This could have been “imple-
mented” using the standard notion of theory morphism in the following alternative manner:
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Proposition 10. A generalized theory morphism H : T — T’ is the same thing as an
ordinary theory morphism H : T — T’ & ONE, where & denotes coproduct of theories, and
ONE is a theory with a single kind [One] and sort One, a constant * of that kind, and the
equation (V{z})z = *.

Proof. Leaving a kind or sort undefined in a generalized signature morphism corresponds
respectively to mapping it to [One] or One in T & ONE, while leaving the image of an
operator undefined corresponds to mapping it to the term . a

Note that there is an equivalence of categories between the models of 77 and those of
T' & ONE, because, even though we have introduced a new kind [One], all its elements are
collapsed by the equation (V{z})x = x to the constant * and can play no distinguished role.

Example. A special case of generalized theory morphisms are the projections from n-tuples
to m-tuples, with m < n. Consider a theory 3-TUPLE for triples with kinds 3-Tuple, EltQzx,
EltQy, EltQz, an operator (_, _, ) : EltQx EltQy EltQz — 3-Tuple, projection operators p1,
p2, and ps, and the obvious equations. Similarly, the theory 2-TUPLE has kinds 2- Tuple,
ElQz, EltQz, an operator (_,_ ) : EltQx EliQz — 2-Tuple, corresponding projection oper-
ators p; and ps, and the equations for pairing. Projecting from a triple to a pair by pro-
jecting out the second component can be represented by the generalized theory morphism
H : 3-TUPLE — 2-TUPLF mapping the kinds EltQz and EltQz to themselves, 3-Tuple to
2-Tuple, and the operator (_, _, ) to the term (x; : EltQx, x3 : EltQz); the images of the kind
EltQy and the operator p, are left undefined.

5.4.2 Simulation Maps as Generalized Theory Morphisms. We now have all the
ingredients needed to define a category SRWThHomy in which stuttering maps are specified
by theory interpretations. Objects in SRWThHom are the same as those in SRWTh
(see Section 5.1), that is, triples (R, (X', E’),J) satisfying all requirements on page 21. A
morphism

H: (Rl, (217E1 @] Dl), J1) — (RQ, (Eé, EyU DQ), JQ)

in SRWThHom‘: is a generalized signature morphism H : X1 U II; — Y5 U Il5 such that:
1. Ho J; = Js (so that BOOL is preserved and states in Ry are mapped to states in Rs).

2. H:(X1,F;) — (X9, E) is a generalized morphism of membership equational theories
with initial semantics, so that we have a unique Xi-homomorphism

n" :Ts g, — Un(Ts,/p,) : [t] — [H(t)].

3. (Preservation of transitions.) nﬁ(smte) : T(R1) g, (state) — T (Ra2)s,(state), the compo-
nent corresponding to the kind J; (State) in nff mapping [t] to [H(t)], is a stuttering map
of transition systems.

4. (Preservation of predicates.) For each ¢t € T'x;, j, (state) and state predicate p(ui, ..., un),
H(p(uq,...,u,)) is a state predicate and we have

EyUDyF (H(t) = H(p(ug, ... up))) =true = EyUD; F (t Ep(ug, ..., u,)) = true.

Since H cannot map a state predicate to an arbitrary formula, the problem mentioned in
Section 2.3 does not arise and we can analogously construct a subcategory SRWThHomTf
of strict maps. The definition is exactly the same except for item (4), where the implication
must actually be an equivalence. Similarly, to get a category RWThHom_ of non-stuttering
maps we simply replace condition (3) by the requirement that, for all ¢,#" € T'x, s, (state):

t _>’}21,J1(State) t = H(t) _>%€2,J2(State) H<t/) :
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That H so constrained indeed gives rise to a map of Kripke structures is shown in Propo-
sition 11 below. For that, let us define a functor £ : SRWThHom_ — KSMap as follows:

— for objects, K(R, (X', EU D), J) = K(R, J(State))r;
— for morphisms H : (R1, (X}, E1 UD1),J1) — (Ra, (X4, Ea U Dg), Jo) we define K(H) =
(H|m,, ni(state))’ where H|j7, is the restriction of H to the state predicates IT;.

Proposition 11. With the above definitions, K : SRWThHom — KSMap is a functor
with restrictions K : SRVVThHom'S;r — KSMap®** and K : RWThHom_ — KMap.

Proof. K is well-defined on objects, and it is immediate to see that it preserves identities and
composition of morphisms; the only thing we need to check is that, for all H, K(H) is indeed
a map of Kripke structures.

Let then H : (Ry,(X1,E1 U Dy),J1) — (Ra, (X%, E3 U D), J2) be a morphism in
SRWThHom. By item (3) above, ni(smte) : T(R1) g (state) — T (R2) 1, (State) is a stut-
tering map of transition systems. To show preservation of predicates, let p(uq,...,u,) €
L;C(R27Jz(3tate))n2|mnl ([H(t)]). By definition of the reduct of a Kripke structure, we have
K(Ra, J2(State))m,, [H(t)] &= H(p(ui,...,u,)) which, by definition of K(Rq, J2(State)),
and condition (4) in the definition of morphisms in SRWThHom, implies that p(u1, ..., u,)
belongs to Li(r,,.J; (State)) r, ([t]), as required. It is clear that if H belongs to SRWThHom‘S;r
the converse is also true and IC(H) is a strict map.

Finally, for the second restriction mentioned in the statement of the proposition, let
H : (Ri, (X1, E1UDy),J1) — (Ra2, (X5, B2 U D), Jo) be a morphism in RWThHom.
We have to show that K(H) = (H|m, 0 giare)) is @ map from K(Ri,Ji(State))m, to
K(Ra, J2(State)) m,, that is, that 7]JH1(Smm) is a II)-map from KC(Ry, J1(State))n, to the
reduct K(R2, Jo(State)) m, |uy,, - Let [t] — [¢'] be a transition in (R, Ji(State))m, . By the
deadlock-freedom assumption (recall the definition of objects in SRWTh in Section 5.1),
this means that g —>%€1’J1(Smm) t, for some ty € [t], t, € [t']. Since H preserves rewrites,
H(to) *)7122,J2(State) H(ty), and therefore [H(t)] — [H(t')] in K(Rq, J2(State))m,. Preserva-
tion of predicates is proved as before. a

An important consequence of this result and Theorems 2 and 4 is the following:

Theorem 10. Given a morphism H : (R, (X}, E1 U Dy), J1) — (R, (X5, E2 U D), J2) in
SRWThHom, SRWThHomTf, or RWThHomy and a formula ¢ in ACTL*\{—-, X}(I,),
ACTL* \ X(IT1), or ACTL*\—(II), respectively, if H(p) holds in K(Rz, (X4, E2 U D3), Ja)
then ¢ holds in K(Rq1, (X1, E1 U Dy), J1).

Note that there exists an obvious inclusion functor SRWThHom_ — SRWTh_. Simi-
larly, a category RecSRWThHom| of recursive morphisms can be defined with an inclusion
functor ReecSRWThHom|. — RecSRWTh,.

The present lifting of Kripke structures to the framework of rewriting logic can be rep-
resented graphically with the following commutative diagram. In it, the horizontal arrows
between categories associated to Kripke structures are inclusions, and those that map to
categories associated to transition systems are the expected forgetful functors.

J/IC l/c l/c lT
KSMap ——— KSMap ——— KSSim ———— STSys

There are of course similar diagrams involving recursive structures.
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5.5 Examples of Simulations as Theoroidal Morphisms

5.5.1 Predicate Abstraction. Simulations are useful to define abstractions that allow
studying the properties of a complex system using a simpler one. A particular instance of the
methodology of abstraction is predicate abstraction [20,14,40,16]. Under this approach, the
abstract domain is a Boolean algebra over a set of assertions and the abstraction function,
typically as part of a Galois connection, is symbolically constructed as the conjunction of all
expressions satisfying a certain condition, which is typically proved using theorem proving.
We now show how predicate abstractions can be understood as an instance of our notion of
algebraic simulation.

Let us first focus on the transition relation. Given a computational system, a set ¢1, ..., ¢,
of predicates over the states determines an abstraction function mapping a state S to the
Boolean tuple (¢1(S5),...,¢n(S)). Let us assume that the transitions of the system are
specified by a rewrite theory R = (X, E, R) whose kind of states is State. Then, if R is
State-encapsulated with constructor st : ky ...k, —— State (that is, among all operators
in X the kind State only appears in the operator st, and only as its coarity), the above
predicate abstraction can be represented in rewriting logic by means of a rewrite theory
RA = (EA,EA,RA) where:

— X4 contains X and the signature of BOOL, together with a new kind BState, a new
operator bst : Bool® — BState and, for each predicate ¢;, 1 < ¢ < n, an operator
p; = State — Bool to represent it. We then have a signature morphism H : Y — X4
that maps the kind State to BState, the constructor st to the term

bst(p1(st(z1, ..., Tm)), -, Pu(st(z1,...,2m))),

and is the identity everywhere else.

— E4 contains H(E) and the equations in BOOL, together with equations for py,...,p,
specifying the predicates ¢1, ..., ¢y.

— Ry = H(R).

Then, by construction, H : (¥, E) — (X4, E4) is a theory morphism such that t —% ¢4,
t" implies H(t) =% , pssare H(t'), thus preserving the transition relation.

We can now turn our attention to the preservation of properties. Graphically, the rela-
tionship between the different theories involved is depicted in the following diagram,

(Y,E) ——— (X', EUD)

g l

(ZA,EA) (G (ZIA,EA UDA>

where (X', EU D) is the equational theory specifying the properties of the given system, and
(X", E4UDy) is the theory we have to associate to R 4 defining its atomic propositions.
The syntax for the state predicates ¢ (that we assume are constants) in the original system
is given in a subsignature IT of X’. It is usually the case that for each of these g one of the
predicates ¢; in the basis defining the abstraction has the meaning “the state S satisfies q.”
Let ¢1,...,q; be the state predicates in I1. We assume k < n, and that each ¢;, 1 < j <k,
corresponds to the predicate ¢; in the basis of the abstraction (but in general we may have
n > k, with predicates ¢i41,..., ¢, not having a counterpart in IT). That is, for a ¢; with
a corresponding g; in IT, its specification in E4 through p;(.S) is thus essentially the same
(modulo renaming) as that of S |= ¢; in D, so that EUD F (S |= ¢;) = true <= E4 I
p;(S) = true. Then, for the abstraction we use the same set of state predicates IT and they
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are specified in a theory extension (X4, E4) C (X, E4UDy4), with X2y = ¥4 U X" and Dy
containing, for each g; in II with associated ¢;, the equation

(W1, ..o zn)) (bst(zr, ..., x4, .. 20) E @) =25

Let us extend H to XU Il by mapping each state predicate to itself. Thus, for all ground
terms ¢ of kind State and state predicates ¢;, if E4 U Dy = (H(t) = ¢;) = true then,
by the equation defining ¢; in E4 U D4 and since H(t) = bst(pi(¢),...,pn(t)), we have
EoUDy & pi(t) = true and even E4 F p;(t) = true because p; is completely specified
in F4. And hence, due to the relation between the equations defining p;(S) and S = g¢j,
EUDF (t = q;) = true holds and preservation of predicates is guaranteed.

Finally, we can put all the pieces together and summarize the previous discussion as
follows.

Theorem 11. Let a concurrent system be specified as an object (R,(X', E'U D), J) of the
category SRWThHom_, where R is J(State)-encapsulated, and let ¢y,..., ¢, be a set of
predicates over the kind J(State), with each state predicate q; € II (we assume that all
such q; are constants) corresponding to a ¢;, 1 < j < k. The result of applying predicate
abstraction is the system given by (Ra, (X%, Ea U Da),Ja), where (X, E4 U Dy) and Ra
are defined as explained above, and where Ja(State) = BState. Then, with these definitions,
H: (R, (¥, EUD),J) — (Ra, (X, EsUDa),Ja) is an arrow in SRWThHom, where
H is the signature morphism X UII — X', U II.

The bakery protocol. Let us illustrate these ideas by outlining how they apply to the bakery
protocol. This is an infinite state protocol that achieves mutual exclusion between processes
by dispensing a number to each process and serving them in sequential order according to the
number they hold. For the case of two processes, the transitions can be specified in rewriting
logic, using Maude syntax, by the following theory R = (X, E, R):

mod BAKERY is
protecting NAT .
sorts Mode State .

ops sleep wait crit : -> Mode .
op st : Mode Nat Mode Nat -> State .
op initial : -> State .

vars P Q : Mode .
vars X Y : Nat .

eq initial = st(sleep, 0, sleep, 0) .

rl [pl_sleep] : st(sleep, X, Q, Y) => st(wait, s Y, Q, Y)
rl [pil_wait] : st(wait, X, Q, 0) => st(crit, X, Q, 0) .
crl [pl_wait] : st(wait, X, Q, Y) => st(crit, X, Q, Y) if not (Y < X) .
rl [pl_crit] : st(crit, X, Q, Y) => st(sleep, 0, Q, Y)
rl [p2_sleep] : st(P, X, sleep, Y) => st(P, X, wait, s X)
rl [p2_wait] : st(P, 0, wait, Y) => st(P, O, crit, Y) .
crl [p2_wait] : st(P, X, wait, Y) => st(P, X, crit, Y) if Y < X .
rl [p2_crit] : st(P, X, crit, Y) => st(P, X, sleep, 0)
endm

States are represented by terms of sort State, which are constructed by a 4-tuple operator
<_,_,_,_>; the first two components describe the status of the first process (the mode it is
currently in, and its priority as given by the number according to which it will be served),
and the last two components the status of the second process. The rules describe how each
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process passes from being sleeping to waiting, from waiting to its critical section, and then
back to sleeping.

The properties are defined in a theory extension (X, F) C (X', E U D) that simply adds
four constants 1wait, 1crit, 2wait, and 2crit to X to characterize when the first and second
processes are in wait or crit mode, together with the obvious equations:

eq (st(wait, X, N, Y) |= 1lwait) = true .
eq (st(sleep, X, N, Y) |= 1lwait) = false .
eq (st(crit, X, N, Y) |= lwait) = false .
eq (st(P , X, wait, Y) |= 2wait) = true .
eq (st(P , X, sleep, Y) |= 2wait) = false .
eq (st(P , X, crit, Y) |= 2wait) = false .
eq (st(crit , X, Q, Y) [|= lcrit) true .
eq (st(sleep, X, Q, Y) |= lcrit) = false .
eq (st(wait, X, Q, Y) |= lcrit) = false .
eq (st(P , X, crit, Y) |= 2crit) = true .
eq (st(P , X, sleep, Y) |= 2crit) = false .
eq (st(P , X, wait, Y) |= 2crit) = false .

For this protocol, we might be interested in verifying the safety property AG—(lcritA2crit).
We will use the following set of seven predicates to define the predicate abstraction:

o1(stM, X, N, Y)) < M == wait os5(stM, X, N, Y)) < X == 0
$a(stM, X, N, Y)) <= M == crit p(stM, X, N, Y)) <= Y ==0
p3(stM, X, N, Y)) <= N == wait pr(stM, X, N, Y)) <= X <Y
Pa(stM, X, N, Y)) < N == crit

Intuitively, we only care whether the processes are in wait or crit mode, whether their
counters are equal to zero, and which counter is greater.

Note that the state predicates in the signature correspond to predicates 1-4. In terms of
the notation used above, ¢; would be 1wait and it would be associated to ¢1, ¢o would be
lcrit and would be associated to ¢o, and q3 and g4 would be 2wait and 2crit, associated
to ¢3 and ¢4. Now, the abstract rewrite theory R4 = (X4, Ea, R4) is constructed by adding
to R:

— Operators p1 : State -> Bool, ..., p7 : State -> Bool, together with a new kind
BState and the constructor for abstract states

op bst : Bool Bool Bool Bool Bool Bool Bool -> BState .

This determines the signature morphism H, that maps the constructor operator st to
the term

bst(pl(stM, X, N, Y)),...,p7(st(M, X, N, Y)))

— Equations associated to pi specifying ¢; for ¢ = 1,...,7. Since predicates ¢1,..., ¢4
correspond to the atomic propositions, their defining equations are “the same”:

eq pl(st(wait, X, N, Y)) = true .
eq pl(st(sleep, X, N, Y)) = false .
eq pl(st(crit, X, N, Y)) = false .
eq p2(st(wait, X, N, Y)) = false .
eq p2(st(sleep, X, N, Y)) = false .
eq p2(st(crit, X, N, Y)) = true .
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The three remaining equations are also immediate:

eq p5(st(M, X, N, Y)) = (X == 0)
eq p6(st(M, X, N, Y)) = (Y == 0)
eq p7(st(M, X, N, ¥)) = (Y < X) .

— The translation of the rules in R by the signature morphism H. In particular, the two
rules introduced before become:

rl bst(pl(st(M, X, sleep, Y)), ..., p7(st(M, X, sleep, Y))) =>
bst(pl(st(M, X, wait, Y)), ..., p7(st(M, X, wait, s(X)))) .
crl bst(pi(st(M, X, wait, Y)), ..., p7(st(M, X, wait, Y))) =>
bst(pl(st(M, X, crit, Y)), ..., p7(st(M, X, crit, Y)))
if Y<X .

Finally, we have to write the equations in D4 defining the atomic propositions in the
abstract model, which is straightforward.

eq (bst(B1, B2, B3, B4, B5, B6, B7) |= lwait) = Bl .
eq (bst(B1, B2, B3, B4, B5, B6, B7) |= 1lcrit) = B2 .
eq (bst(B1, B2, B3, B4, B5, B6, B7) |= 2wait) = B3 .
eq (bst(B1, B2, B3, B4, B5, B6, B7) |= 2crit) = B4 .
By construction, this model is a predicate abstraction with respect to the basis ¢1, ..., ¢7

of the bakery protocol, in which the desired property can be model checked.

It is worth pointing out that this algebraic method of defining predicate abstractions
cannot be expressed within the framework of [33], because the specification of the predicates
¢; requires, in general, to introduce auxiliary operators and thus a different signature X4 # X.
Also, the resulting rewrite theory is not executable in general. This means that it cannot
be directly used in a tool like the Maude model checker [18]. Predicate abstraction can be
considered as a particular instance of our framework of algebraic simulations from a conceptual
or foundational point of view, which is still quite useful because it provides a justification for
the method within our framework. Current approaches to predicate abstraction do not work
directly with the minimal transition relation (described in our account by R 4). Instead, they
compute a safe approximation of R 4 by discharging some proof obligations.

5.5.2 A Fairness Example. In many situations we are interested in the behavior of a
system under certain fairness assumptions, like requiring that a rule is eventually applied if it
is always enabled from a certain point on. Currently, the capability of focusing only on those
paths satisfying the fairness requirements is not supported by the Maude LTL model checker.
However, all is not lost since we can illustrate the use of theoroidal (bi)simulation maps to
reason about fairness. The treatment can be made for very general classes of rewrite theories,
and for quite flexible notions of fairness [31] (see also [32], where a general method to reduce
action-based formulas such as fairness to state-based formulas in LTL or CTL" is given).
Here, we limit ourselves to illustrating some of the key ideas, including the use of theoroidal
maps, by means of a simple communication protocol example. Note also that the same idea
can be used for the representation and study of labeled transition systems in rewriting logic.

Consider a system consisting of a sender, a channel, and a receiver. The goal is to send a
multiset of numbers (in arbitrary order) from the sender to the receiver through the channel.
The channel can at any time contain several of these numbers. Besides the normal send and
receive actions, the channel may stall an arbitrary number of times in sending some data. We
can model the states of such a system by means of the signature
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ops snd ch rcv : Nat -> Conf .
op null : -> Conf .
op __ Conf Conf -> Conf [assoc comm id: null]

where the operator __ (juxtaposition notation) denotes multiset union and satisfies the equa-
tions of associativity and commutativity, and has null as its identity element. For example,
the term

snd(7) snd(3) snd(7) ch(2) ch(3) rcv(l) rcv(9)

describes a state in which 3 and two copies of 7 have not yet been sent, 2 and another copy of
3 are in the channel, and 1 and 9 have been received. The behavior of the system is specified
by the following three rewrite rules:

var N : Nat .

rl [send] : snd(N) => ch(N)
rl [stall] : ch(N) => ch(N)
rl [receive] : ch(N) => rcv(N)

Is this system terminating? Not without extra assumptions, since the stall rule could be
applied forever. To make it terminating it is enough to assume the following “weak fairness”
property about the receive rule, described by the formula

wf-receive = FG enabled-receive — GF taken-receive,

that is, if eventually the receive rule becomes continuously enabled in a path, then it is taken
infinitely often. Specifying the enabled-receive predicate equationally is quite easy (we just
need to have some value in the channel) but the specification of the taken-receive predicate
is more elusive. For example, does the taken-receive predicate hold of the state described
above? We don’t know; maybe the last action was receiving the value 1, in which case it
would hold, but it could instead have been stalling on 3, or sending 2, and then it wouldn’t.
Here is where a theory transformation corresponding to a theoroidal map, and allowing us to
define a bisimilar system where the taken-receive predicate can be defined comes in. The
new theory extends the above signature with the following new sorts and operators:

ops send stall receive * : -> Label .
op {_I_} : Configuration Label -> State .

that is, a state now consists of a configuration-label pair, indicating the last rule that was
applied. Since initially no rule has been applied, we add the label * for all initial states. The
rules of the transformed theory are now:

var Conf : Configuration .
var L : Label .

rl [send] : { Conf snd(n)
rl [stall] : { Conf ch(n)

| => { conf ch(n) | send } .
|
rl [receive] : { Conf ch(n)

L}
L } => { conf ch(n) | stall } .

| L} =>{ conf rcv(n) | receive } .

We can then define the predicates enabled-send, enabled-receive, and taken-receive by
the equations

eq ({ Conf snd(N) | L } |= enabled-send) = true .
eq ({ Conf ch(N) | L } |= enabled-receive) = true .
eq ({ Conf | receive } |= taken-receive) = true .
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Then the fair termination property can be defined by the following formula, which indeed
holds in the Kripke structure associated to this transformed theory for any initial state:

A (wf-receive — F(—enabled-send A —enabled-receive))

Let (X comms Ecomm) denote the underlying equational theory of our original rewrite
theory, and let (X'Lcomm, Ecomm) denote that of the transformed theory (it has the same
equations Ecomm ). We can define a generalized theory morphism H : (X1 comm, Ecomm) —
(X comms Ecomm) as follows. The sorts, implicit kinds, and operators in X ¢omm are mapped
identically to themselves; the sort State is mapped to Conf; and the sort Label is not mapped
anywhere; the operator {_|_} is mapped to the variable conf of sort Conf; finally, the label
constants are not mapped anywhere. Now, let I1y consist of the predicates enabled-send and
enabled-receive, which in the original theory are defined by the equations

eq (Conf snd(N) |= enabled-send)

= true .
eq (Conf ch(N) |= enabled-receive) = true .

Then, if Comm and LComm denote our rewrite theories, H induces a theoroidal bisimulation
(and thus, strict) map of Kripke structures H : K(LComm, [State]) g, — K(Comm, [Conf])r,.
Furthermore, in the case of LComm we can extend Iy to I by adding the taken-receive
predicate, so that fair termination can be properly specified and verified.

6 Proving Algebraic Simulations Correct

In this section we discuss methods to show that a given theory morphism or equationally-
defined function indeed specifies a simulation between two computational systems. We start
by considering the simpler case of non-stuttering maps, and move to stuttering ones after
that.

6.1 Preservation of the Transition Relation in RWThHom|: and RWTh,:

Let us start by considering the category RWThHom|_. A simple criterion for a generalized
theory morphism H : R; — Ro to actually preserve the transition relation is to check that,
for each rule t — ¢’ if C' in R4, a corresponding rule H(t) — H(¢') if H(C) exists in Rs.
This requirement, however, is too strong in many cases.

Another possibility is to use theorem proving. In Maude there is available the ITP tool
[9,13], an inductive theorem prover written in Maude itself that mechanizes the proof of
sentences in membership equational logic. Unfortunately, for the time being, the ITP does
not allow us to reason about rewrite rules. However, using the constructions explained in
[6] we can still do that reasoning in an indirect way. In [6], to every rewrite theory R a
membership equational theory Reach(R) is associated, with sorts Ary, Ar,lc, and operators
_ — _for each kind k in R, and such that R F ¢t — ¢’ iff Reach(R) b (t — t') : Arg, and
t =g U iff Reach(R) & (t — 1) : Ar. Based on this result, the following proposition offers
a criterion for checking whether the transition relation is preserved.

Proposition 12. Let Ry = (X1, E1, R1) and Ry = (X3, Es, Ry) be rewrite theories and let
H : (¥1,E)) — (X9, Es) be a theory morphism with initial semantics such that, for any
f € X4, the term H(f) does not have multiple occurrences of a single variable. Let T be
a membership equational theory extending the disjoint union of (X1, E1) and (X2, E3) in a
protecting mode with operators and sentences defining —>}317k and —>}327k as sorts 147"1,1C and
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Ar?,lc, and in which the morphism H is equationally specified through a family of operators h.
Then, if for all rules (VX)t — t' if C in Ry with t of kind k we can inductively prove

T Fing (VX) (h(t) — h(t)) : A2y if CF,

(where C* is like C' but with all rewrites t — t' replaced by (t — t') : Arly), it follows that
for all kinds k in R1 and t,t' € Ts;, , we can inductively prove

t =gt = H(t) =%, goy HE).

Proof. Assume that t —  t'. Then, either there is a rule (VX)I — rif C' in Ry and
a substitution  such that By - ¢ = 6(l), By - ¢ = 6(r) and 6(C) holds in Ry, or ¢ is
fltr, oty tn), tis f(tr, .ot t,) and t; — . . Tn the first case, by the way T
has been constructed we have T+ H(C’ﬁ) and from the hypothesis it follows that T'F (h(t) —

h(t")) : Aer, which implies H (t) — R ) H( "). In the second case, by induction hypothesis

H(ti) =g, H(ky) H(t7) and, by our assumptlon that H(f) has no repeated variables, H(t) =

H(f)(H(t1)7 e 7H(ti)7 s 7H(tn)) RQ,H(ki) H(f)(H(tl)v . -aH(t;)v . 'aH(tn)) = H(tl)'
O

Note that this proposition is still valid even if H is just an arbitrary function, as long as
it can be equationally defined. Therefore, the result also applies to morphisms in RWTh_,
and obviously to those in RecRWThHom_ and RecRWTh,.

6.1.1 Example: A Simple Protocol. Let us illustrate this idea with an example. Con-
sider the following protocol adapted from [15]:

mod PROTOCOL is
protecting NAT .
sorts State Mode .
ops think eat : -> Mode .
op st : Mode Mode Nat -> State .
op odd : Nat -> Bool .

vars M N : Mode . var X : Nat .

eq 0dd(0) = false .
eq 0dd(s(X)) = not(odd(X)) .

crl st(think, N, X) => st(eat, N, X) if odd(X)

rl st(eat, N, X) => st(think, N, 3 * X + 1) .

crl st(M, think, X) => st(M, eat, X) if odd(X) = false .

crl st(M, eat, X) => st(M, think, X quo 2) if odd(X) = false .
endm

true .

Following [15], this specification can be thought of as a protocol controlling the mutually
exclusive access to a common resource of two concurrent processes, modelling the behavior
of two mathematicians, corresponding to the first two components in a state represented by
st(M, N, X). They alternate phases of “thinking” and “eating,” regulated by the current
value X of the third component of the state: if X is odd, then the first mathematician has the
right to enjoy the meal, otherwise, the turn corresponds to the second one. After finishing the
eating phase, each mathematician leaves the dining room and modifies the value of N in his
own fashion.

Consider now the following module, purported to specify a correct abstraction of the
system specified by PROTOCOL, that replaces the third argument of the state by its parity.
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mod PROTOCOL-ABS is
sorts State Mode Parity .
ops think eat : -> Mode
ops o e : —-> Parity .
op st : Mode Mode Parity -> State .

vars M N : Mode .

rl st(think, N, o) => st(eat, N, o)

rl st(eat, N, o) => st(think, N, e)

rl st(eat, N, e) => st(think, N, o)

rl st(M, think, e) => st(M, eat, e)

rl st(M, eat, e) => st(M, think, e)

rl st(M, eat, e) => st(M, think, o)
endm

The theory T in Proposition 12 corresponding to these two modules is then as follows.
(Actually, since the modules are quite simple, the theory below is a simplification of the theory
that would result from applying the general construction given in [6].)

fmod ABSTRACTION is protecting NAT .
sorts AR1 AR17 AR2 AR27
sorts Model Mode2 Statel State2 Parity .

subsort AR1 < AR17
subsort AR2 < AR27

op odd : Nat -> Bool .

ops thinkl eatl : -> Model [ctor]
op stl : Model Model Nat -> Statel [ctor]

ops think2 eat2 : -> Mode2 [ctor]
ops o e : —-> Parity [ctor]
op st2 : Mode2 Mode2 Parity -> State2 [ctor]

op _->_ : Statel Statel -> AR17? [ctor]
op _—>_ : State2 State2 -> AR27 [ctor]

op abs : Statel -> State2 .
op absMode : Model -> Mode2 .

vars M1 N1 : Model
vars M2 N2 : Mode2 .
vars X Y : Nat

eq 0dd(0) = false .
eq 0dd(s(X)) = not(odd(X))

eq absMode(thinkl) = think2 .
eq absMode(eatl) = eat2 .

ceq abs(sti(M1, N1, X))
if (odd(X) = true)
ceq abs(sti(M1, N1, X))

st2(absMode(M1), absMode(N1), o)

st2(absMode(M1), absMode(N1), e)
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if (odd(X) = false)

cmb sti(thinkl, N1, X) -> sti(eatl, N1, X) : AR1 if (odd(X) true)
mb sti(eatl, N1, X) -> sti(thinkl, N1, (3 * X) + 1) : AR1
cmb st1(M1, thinkl, X) -> st1(M1, eatl, X) : AR1 if (odd(X) = false) .

cmb st1(M1, eatl, X) -> st1(M1, thinkl, X quo 2) : ARl if (odd(X) = false)

mb st2(think2, N2, o) -> st2(eat2, N2, o) : AR2 .

mb st2(eat2, N2, o) -> st2(think2, N2, e) : AR2 .

mb st2(eat2, N2, e) -> st2(think2, N2, o) : AR2 .

mb st2(M2, think2, e) -> st2(M2, eat2, e) : AR2 .

mb st2(M2, eat2, e) -> st2(M2, think2, e) : AR2 .

mb st2(M2, eat2, e) -> st2(M2, think2, o) : AR2 .
endfm

Note that each of the rules in the original two specifications has become a membership
assertion defining one of the two types AR1 or AR2.

Then, we can prove with the ITP that the transition given by the fourth rule in PROTOCOL
is preserved in PROTOCOL-ABS, which is expressed as follows:

(goal abstract4 : ABSTRACTION |- A{ M1:Model ; X:Nat }
(((odd(X:Nat)) = (false)) =>
((abs(st1(M1:Model, eatl, X:Nat)) ->
abs(st1(M1:Model, thinkl, X:Nat quo 2))) : AR2)) .)

The proof for the other rules is similar. (Full details can be found in [37].)

Note that Proposition 12 is not very useful when the condition C' contains rules. Consider
for example a rewrite theory R; with two unary operators f; and g1, and the rule fi(z) —
g91(y) if © — y. Let us write Ry for the rewrite theory that is obtained from R4 by renaming
f1 and g1 as fo and go. Ry and Rg are clearly related by a theory morphism H (just a
renaming) and the transition relation is trivially preserved. However, to prove that using the
previous result we would have to show

T Fina (Vz,y) (R(f1(2)) — h(gi(x))) : Ar?}{(k) if (z —vy): Arly,

which requires the use of some kind of induction hypothesis on (z — y) : Ariy, which is not
available. Fortunately, many specifications do not require the use of rules in the conditions;
in particular, recursive rewrite theories belong to this class (recall Definition 19).

6.2 Preservation of the Transition Relation in SRWThHom,: and SRWTh,:

The definition of stuttering simulations requires the satisfaction of a property involving infinite
paths, which in general is not easy to check. In Section 2.4 we presented an alternative
characterization that can also be used for morphisms between rewrite theories; however, we
would obviously rather have conditions that apply directly to the sets of equations and rules
of the rewrite theories.

The idea is as follows. Assume that we have rewrite theories Ry = (X1, E1, R1) and
Ra = (Xa, Eg, Ry), and a generalized theory morphism with initial semantics H : (X1, E1) —
(X5, Es). For H to be a stuttering map it is enough to show that some of the rules in R
give rise to rewrite steps in Ry while the rest amount to stuttering when translated. That
is, Ry can be decomposed as the disjoint union of R} and RY so that if ¢ H}%’uk t' then

H(t) —>}z2,H(k) H(t'), and if —>}%,1,,k t' then H(t) and H(#') can be proved to be equal in Rs.
There is only one detail missing: in order to avoid infinite stuttering we have to require R}
to be terminating. This idea is formalized in the following proposition.
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Proposition 13. Let Ry = (X1, E1, R1) and Ry = (X5, Es, Ry) be rewrite theories and let
H: (X,E) — (X9, Ey) be a generalized theory morphism with initial semantics such that,
for any f € X1, the term H(f) does not have multiple occurrences of a single variable. Let T
be a membership equational theory emtendmg the disjomt union of (Zl7 Ey) and (X9, E2) with
operators and sentences defining —J K and —%, k as sorts Arty and Ar2;, and in which
the morphism H is equationally speczﬁed through a family of operators h. Assume that Ry
is the disjoint union of R} and RY, with R} terminating modulo Ey. Then, if for all rules
(VX)t — ¢ if C in R| with ¢ of kind k we can inductively prove

T bing (VX) (h(t) — h(t')) : Ar2yyq if CF,

(where C% is like C' but with all rewrites t — t' replaced by (t — t') : Arly), and for all rules
(VX)t — ¢ if C in R} with t of kind k,

T tina (VX) (h(t) = h(t')) if C*,
it follows that each path in R is H-matched by a path in Rs.

Proof. Let w be apath t =ty —g, t1 =g, t2 =g, --- starting at ¢ € T’s;, 1, : we have to prove
that there is a path p in R starting at H(¢) that H-matches 7. For this, define a(0) = 0,
and a(i + 1) to be the first position in 7 greater than «(i) that results from the application
of arule in Rj; since RY is terminating, « is well-defined and strictly increasing. Then, define
p by p(i) = H(ta)- It turns out that t,; reaches t,(;11) after a finite number of rewrites
in RY and a single transition in Rf: t,; H}E'{,k Uy H}?/{’k U H%%’{,k *)}3’1/716 U 4)}?/1,](:
ta(i+1)- By the assumptions of the proposition, applying the same reasoning as in the proof of
Proposition 12 we have that H (u,) —an%H(k) H(toi+1)) = p(i + 1). Analogously, ¢ —>}%,1,,k t/
implies Ey = H(t) = H(t') and hence p(i) = H(to()), U1, - - ., U, are all provably equal in E.
It follows that p(4) —ﬁzz’H(k) p(i+1) and therefore p is a valid path in Ro and it H-matches
7 by construction. a

As in the case of non-stuttering simulations, this proposition applies not only to theory
morphisms but to any equationally definable function, and thus it provides a criterion to
check preservation of transitions in SRWTh as well.

6.2.1 Example: A readers-writers system. Consider the following specification of a
readers-writers system.

mod R&W is
protecting NAT .
sort Config .
op <_,_> : Nat Nat -> Config . --- readers/writers

vars R W : Nat .

rl <0, 0>=><0, s(0) >.
rl <R, s(W) >=><R, W>.
rl <R, 0>=><s(R), 0>
rl < s(R), W>=><R, W>.
endm

A state is represented by a pair < R, W > indicating the number R of readers and the
number W of writers accessing the critical resource. Readers and writers can leave the resource
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at any time, but writers can only gain access to it if nobody else is using it, and readers only
if there are no writers.

Now, consider the following implementation of the system in which readers and writers
“ask for permission” before entering the critical section.

mod R&W-STUTTERING is
protecting NAT .
sorts Key Config .

ops reader writer empty : -> Key .
op <_,_,_> : Nat Nat Key -> Config .

vars R W : Nat .

var K : Key .

rl < 0, 0, empty > => < 0, 0, writer > .

rl <R, s(W, K>=><R, W, K>.

rl <R, 0, empty > => < R, 0, reader > .

rl < s(R), W, K>=><R, W, K> .

rl < R, W, writer > => < R, s(W), empty > .

rl < R, W, reader > => < s(R), W, empty > .
endm

The third argument of the tuple of a state indicates whether a reader or a writer has asked
for permission to enter the critical section; it takes the value empty if no request has been
made.

We can show that R&W-STUTTERING is a correct implementation of R&W by constructing a
stuttering map of transition systems

h : T (R&W-STUTTERING )contig — 7 (R&W)contig -

For that, if the theory T in Proposition 13 renames the sort Config in R&W and R&W-STUTTERING
respectively as Configl and Config2, the stuttering map h can be equationally defined in T'
as follows. (Again, it is a simplification of the construction in [6].)

fmod R&W-SIMULATION is
protecting NAT .

sorts AR1 AR17 AR2 AR27 .
sorts Configl Key Config2 .

subsort AR1 < AR17 .
subsort AR2 < AR27 .

op <_,_> : Nat Nat -> Configl [ctor] . --- readers/writers
ops reader writer empty : -> Key [ctor]
op <_,_,_> : Nat Nat Key -> Config2 [ctor]

op _->_ : Configl Configl -> AR17 [ctor]
op _—>_ : Config2 Config2 -> AR27 [ctor]

op h : Config2 -> Configl .

vars R W : Nat .
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var K : Key .

eq h(< R, W, empty >) = <R, W> .
eq h(< R, W, reader >) <sR), W>.
eq h(< R, W, writer >) <R, s(W > .

mb < 0, 0> -><0, s(0) > : AR1 .

mb < R, s(W) > ->< R, W> : AR1 .

mb <R, 0> ->< s(R), 0> : AR1 .

mb < s(R), W> ->< R, W> : AR1 .

mb < 0, 0, empty > -> < 0, O, writer > : AR2 .

mb < R, s(W), K> ->< R, W, K> : AR2 .

mb < R, 0, empty > -> < R, 0, reader > : AR2 .

mb < s(R), W, K> ->< R, W, K> : AR2 .

mb < R, W, writer > -> < R, s(W), empty > : AR2 .

mb < R, W, reader > -> < s(R), W, empty > : AR2 .
endfm

Let Ry be the first four rules in R&W-STUTTERING and Ry the remaining two. R; is terminating,
because the total number of readers, writers, and “emptys” decreases. Now, consider the first
rule in R;. Recall that the rewrite relation in R&W is represented by a sort AR1 in 7. Then,
for instance for the second rule, we can prove

(goal abstract2 : R&W-SIMULATION |- A{ R:Nat ; W:Nat ; K:Key }
((h(< R:Nat, s(W:Nat), K:Key >) -> h(< R:Nat, W:Nat, K:Key >)) : AR1) .)

and similarly for the other rules in R;. In the case of Ry, we can show that

(goal stuttl : R&W-SIMULATION |- A { R:Nat ; W:Nat }
((h(< R:Nat, W:Nat, reader >)) = (h(< s(R:Nat), W:Nat, empty >))) .)

and

(goal stutt2 : R&W-SIMULATION |- A { R:Nat ; W:Nat }
((h(< R:Nat, W:Nat, writer >)) (h(< R:Nat, s(W:Nat), empty >))) .)

Therefore, the conditions in Proposition 13 are satisfied and h is an algebraic stuttering map
of transition systems.

6.3 Preservation of Atomic Propositions

In order to show preservation of atomic propositions it is convenient to assume that they are
completely specified, in the sense that we can always prove whether they are true or false
with respect to any particular state. For the case of decidable properties, we can make this
assumption without loss of generality. We then have the following result, similar to the ones
for preservation of the transition relation.

Proposition 14. Let (X1, E1) C (X1, E1UDy) and (X2, Es) C (XY, E2UD3) be the equational
theories corresponding to two objects in SRWThHom‘:, and let H : X1 UIl, — Y5 UII5 be
a generalized signature morphism such that H : (X1, E1) — (X2, Es) is a theory morphism.
Let T be a membership equational theory extending the disjoint union of (X7, F1 U D) and
(X%, E5UDy) in which the morphism H is equationally specified through a family of operators
h. Then, if we can prove

T Fina (YX) (h(t) = h(p)) = false if C
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for all equations (VX) (t = p) = false if C in Dy, it follows that, for ground termst' and p’,
E;UDy - (h(t) E h(p') =true) = E,UDy (' Ep = true).
Furthermore, if instead we can prove

T Fina (VX) (z = p) = (h(z) = h(p))
then the above tmplication becomes an equivalence.

Proof. By our assumption about the completeness of the specifications it holds that either
E,UDy F (t =p)=trueor By UDy F (t = p) = false. But this second case cannot happen
unless true = false in Fo U Do, because we can prove by structural induction and using the
hypothesis of the proposition that Ey U Dy F (¢t = p) = false implies E5 U Dy F (h(t) =
h(p)) = false.

It is also clear that the equality at the end of the proposition implies that A is strict, with
which we have the stated equivalence. a

Again, this result also applies to SRWTh.

6.3.1 Example: A revisited protocol. For the protocol of the “thinking mathemati-
cians” of Section 6.1, the atomic propositions are specified as follows:

eq stl(thinkl, N1, X) |= nmexcll = true .
eq st1(M1, thinkl, X) |= nmexcll = true .
eq sti(eatl, eatl, X) |= nmexcll = false .

eq st2(think2, N2, P) |= nmexcl2 = true .
eq st2(M2, think2, P) |= nmexcl2 = true .
eq st2(eat2, eat2, P) |= nmexcl2 = false .

Then, the conditions we have to check are of the form:

(goal abstract : ABSTRACTION |- A{ X:Nat }
((abs(stl(eatl, eatl, X:Nat)) |= nmexcl2) = (false)) .)

Similarly, for strictness we would have to show that

(goal abstract-st : ABSTRACTION |- A{ Si:Statel }
((S1:Statel |= nmexcll) = (abs(S1:Statel) |= nmexcl2)) .)

which can also be proved with the ITP.

7 Concluding Remarks

We have presented a quite general notion of stuttering simulation between Kripke structures
that relaxes the requirements on preservation of state predicates both in not requiring iden-
tical preservation and in allowing formulas to be translated. We have also proved general
representability results showing that both Kripke structures and their simulations can be
fruitfully represented in rewriting logic. There are different ways of representing these notions
in rewriting logic, ranging from equational abstractions to algebraic stuttering simulations:
equational abstractions were considered in [33,34] and theoroidal maps in [27]. Here, be-
sides giving a fuller account of theoroidal maps we have focused on the remaining cases of
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equationally-defined abstraction maps and simulations as rewrite relations, illustrating their
use and giving sufficient conditions to discharge their associated proof obligations.

A particular instance of our methodology is the technique of predicate abstraction; the
theory transformation explained in this paper produces a non-executable theory in general,
though. We have also developed a prototype using Maude that implements the algorithm in
[14], and have used it to abstract some of the examples considered here [37]. The prototype
makes heavy use of Maude’s ITP to build the abstract transition relation; we expect that
future improvements in the ITP will make our prototype’s performance comparable to that
of more advanced tools.

Future research directions include: (i) a continued quest for even more general simulations
and for related preservation and compositionality techniques; (ii) proof methods and tool
support to prove simulations correct; and (iii) experimentation and case studies.

Acknowledgments. We thank Pete Manolios for very helpful discussions on stuttering sim-
ulations. We also thank Jan Bergstra and John Tucker for suggesting to us the use of the
encoding of finite sets as numbers in [39] as a key step in the proof of Theorem 6.
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