
Ground Confluence of Order-sorted Conditional
Specifications Modulo Axioms

Francisco Durán

Universidad de Málaga, Málaga, Spain

José Meseguer

University of Illinois, Urbana-Champaign, IL, USA

Camilo Rocha

Pontificia Universidad Javeriana, Cali, Colombia

Abstract

Terminating functional programs should be deterministic, i.e., should evaluate to a
unique result, regardless of the evaluation order. For equational functional programs
such determinism is exactly captured by the ground confluence property. For opera-
tionally terminating conditional equations this is equivalent to ground local confluence,
which follows from local confluence. Checking local confluence by computing criti-
cal pairs is the standard way to check ground confluence. The problem is that some
perfectly reasonable equational programs are not locally confluent and it can be very
hard or even impossible to make them so by adding more equations. We propose three
methods, called Methods 1–3, that can be synergistically combined to prove an order-
sorted conditional specifications modulo axioms B ground locally confluent. Method
1 applies the strategy proposed in [14] to use non-joinable critical pairs as completion
hints to either achieve local confluence or reduce the number of critical pairs. Method 2
uses the inductive joinability inference system proposed in this paper to try to prove the
critical pairs remaining after applying Method 1 ground joinable. It can furthermore
show ground local confluence of the original specification. Method 3 is hierarchi-
cal in nature: it can be used to prove the ground local confluence of a conditional
equational specification whose conditions belong to a subspecification that has already
been proved ground confluent and operationally terminating, and that is conservatively
extended by the overall specification in an appropriate sense. These methods apply
to order-sorted and possibly conditional equational programs modulo axioms such as,
e.g., Maude functional modules. We show their effectiveness in proving the ground
confluence of non-trivial examples that have eluded previous proof attempts.

Keywords: equational programs, ground confluence, order-sorted specifications,
rewriting modulo axioms, inductive joinability proof methods, Maude.

Preprint submitted to Elsevier January 18, 2019

1. Introduction

Functional programs should be deterministic; that is, if they terminate for a given
input, they should return a unique value, regardless of the evaluation order. Ground
confluence is the precise characterization of such determinism for functional equa-
tional programs associated to equational theories of the form E = (Σ, E] B), were
B are structural axioms and E are, possibly conditional, equations that are executed
as rewrite rules

−→
E modulo B. Therefore, for execution purposes, all the relevant in-

formation is contained in the rewrite theory RE = (Σ, B,
−→
E). Since ground confluence

is essential both for correct execution and for almost any form of formal verification
about properties of E and RE, methods to prove ground confluence are very important.

The standard method to do so for a (possibly conditional) terminating equational
program RE = (Σ, B,

−→
E) is to: (i) prove that it is operationally terminating (and if

Σ is order-sorted, also sort decreasing); and then (ii) since operational termination
plus local confluence imply confluence, prove the stronger property that RE is locally
confluent (modulo B). This tends to work well in many cases, but not always. The
thorny issue addressed in this paper is what to do when this standard method does not
work. We describe in what follows three such methods. The first goes back to [14] and
is not new. However it is a good starting point for the other two new methods.

1.1. Method 1: Incremental Joining of Critical Pairs
In [14], the wild goose chase for a convergent specification by attempting a Knuth-

Bendix completion of Ewas explicitly discouraged, since it can often lead to an infinite
loop and, even if it were to eventually succeed, can result in a highly bloated and hard
to understand specification. Instead, the following incremental strategy in the spirit of
Knuth-Bendix was suggested: since failure of a proof of local confluence will generate
a set of unjoinable critical pairs characterizing the most general cases in which rules
cannot be shown confluent, such critical pairs can be used as very useful hints for a
user to try to either: (i) orient a critical pair as a rule and add it to the specification;
or (ii) if the critical pair has the form C[u] = C[v] with C a common context, orient
instead u = v and add it to the specification; or (iii) generalize u = v in cases (i) and (ii)
into a more general u′ = v′ that has u = v as a substitution instance and add an oriented
version of u′ = v′ to the specification. In this way, we obtain a new specification
RE′ = (Σ, B,

−→
E]
−→
G), where

−→
G are the new oriented equations added by methods (i)–

(iii). If RE′ is locally confluent, operationally terminating, and sort-decreasing, we are
done; otherwise, we can iterate the process with the critical pairs obtained for RE′ .

In practice, this incremental strategy works reasonably well, but not always. Fur-
thermore, it raises the following unsolved questions:

1. Have we changed the initial algebra semantics? That is, do the originalRE and its
extension RE′ have the same initial algebra when viewed as equational theories?
If only additions of type (i) are made, this is always true; but additions of type
(ii)–(iii) are often needed in practice.

2. Was the original specification RE already ground confluent? That is, can we use
RE′ as the proverbial “Wittgenstein’s ladder” that we can kick away after we
have proved its local confluence?

2

3. What do we do if we run into a wall? For instance, the “wall” of having an equa-
tion u = v obtained by methods (i)–(iii) above that cannot be oriented because it
would lead to non-termination.

1.2. Method 2: Inductive Proof of Ground Joinability of Critical Pairs

Method 2, the first new method proposed in this paper, answers the above three
unsolved questions, for which Method 1 provides no support. It can achieve proofs of
ground confluence for highly non-trivial theories for which it is impossible to achieve
a Knuth-Bendix completion with a finite set of critical pairs. Furthermore, although
also transformational in nature, Method 2 can show that the original specification was
already ground confluent. In a nutshell, the more general and powerful strategy of
Method 2 is based on three steps:

1. Use the above-described strategy of Method 1 from [14] as far as it can go.

2. If one hits the wall of non-orientability for some critical pairs (Question 3), or
otherwise Method 1 seems to have reached its practical limits without achieving
joinability, prove the ground joinability of the remaining critical pairs —which
are hopefully a smaller set than the original set of critical pairs— by the inductive
joinability inference system1 presented in this work.

3. To ensure preservation of the initial algebra semantics (Question 1) and the
ground confluence of the original specification (Question 2), we can use the
same inductive methods to prove ground joinability of all the equations added
along the first step. Of course, one could skip the first step altogether and merge
the second and third steps into one; but this may require a considerably bigger
effort, since the whole point of taking the first step is to greatly reduce the num-
ber of pairs to be proved ground joinable. Furthermore, the user may have made
an actual mistake in the original specification RE, so that the second and third
steps become meaningless. In such a case, the first step can be quite helpful
in identifying such mistakes and help the user restart the process with a new
specification.

The example we use to illustrate the use and effectiveness of Method 2 is worth
discussing briefly. It is a specification HF-SETS of hereditarily finite sets, i.e., sets
whose elements are themselves finite sets, whose elements . . ., and so on. It is well-
known that hereditarily finite sets provide a model of set theory minus the axiom of
infinity, and that all of finitary mathematics, including arithmetic, can be carried out
within HF-SETS [7]. Therefore, proving the ground confluence of HF-SETS (which
is also terminating) amounts to giving a functional program whose initial model is a
computable model of set theory minus the axiom of infinity. We show that, indeed, the

1We specify the inference system for unconditional specifications, whose critical pairs are likewise un-
conditional. However, our inductive joinability inference system can be extended to the conditional case, so
that conditional critical pairs can likewise be proved ground joinable. In fact, later in the paper, we use one
of the inference rules in a conditional setting.

3

roadblock envisioned in Question 3 (a critical pair that is intrinsically unorientable, yet
it is ground joinable) is met in this example. Furthermore, Method 2 shows that the
HF-SETS specification as originally given is ground joinable.

1.3. Method 3: Hierarchical Proof of Ground Joinability of Conditional Critical Pairs

Conditional equational specifications are intrinsically more complex than uncondi-
tional ones. For joinability this extra complexity clearly shows up: given a terminating
unconditional specification it is decidable whether it is confluent, since this holds if and
only if all critical pairs are joinable. Instead, for operationally terminating conditional
specifications it is in general undecidable whether they are confluent. We may, for ex-
ample, have a conditional critical pair whose condition is unsatisfiable and therefore
causes no confluence problems; but proving such unsatisfiability may be undecidable.
In practical terms this means that for proving ground confluence in the conditional case,
as Charlie Brown would put it, we need all the help we can get.

The first line of help is that, as pointed out in Footnote 1, Method 2 does naturally
extend to the conditional case, so we can use it to inductively prove ground joinability
of conditional critical pairs. But there is more. In this paper we present an additional
new method, Method 3, that is based on a hierarchical idea: the given, operationally
terminating specification, say, (Σ, E∪B), where the conditional equations E are used as
oriented rewrite rules modulo axioms B, may have a subspecification (Σ0, E0 ∪ B0) that
has already been shown to be ground convergent and, furthermore: (i) the conditions in
all equations in E \E0 are Σ0-conditions and remain so after applying any substitutions;
and (ii) (Σ, E ∪ B) conservatively extends (Σ0, E0 ∪ B0) in the rewriting sense of not
introducing any new rewrites among Σ0-terms. Then we can bootstrap ourselves quite
well for proving that (Σ, E ∪ B) is ground convergent. To begin with, we can use the
fact that (Σ0, E0 ∪ B0) is convergent and apply the Church-Rosser Theorem to reason
about the satisfiability/unsatisfiability of conditions in conditional critical pairs at the
inductive equational logic level, that is, in the initial algebra TΣ0/E0∪B0 , where induc-
tive theorem proving techniques —plus satisfiability decision procedures such as, for
example, variant satisfiability [27]— can greatly help. Furthermore, we can combine:
(a) inductive theorem proving in TΣ0/E0∪B0 , (b) variable abstraction to abstract the max-
imal Σ0-subterms in the Σ-terms u and v of a conditional critical pair, say, D ⇒ u ↓ v,
and (c) rewriting techniques in a theory extending (Σ, E ∪ B) with the abstraction vari-
ables as constants and with (oriented) inductive lemmas proved under the assumption
D understood equationally, to prove that D⇒ u ↓ v is ground joinable.

In practice, the opportunities for applying Method 3 to order-sorted conditional
specifications are quite common, because specifications are developed in a modular
way and also because it is quite common that the conditions in conditional equations
only involve a subset of functions —for example some predicates— that often belong
to already-defined submodules. The chicken-and-egg conundrum that Method 3 solves
is that, unless we have already proved a specification ground convergent we cannot use
the Church-Rosser Theorem and inductive equational reasoning techniques to prove
ground joinability of conditional critical pairs. This conundrum is solved not for (Σ, E∪
B) but for the convergent subspecification (Σ0, E0∪B0) thanks to the hierarchical nature
of Method 3. But if Method 3 succeeds, it is then also solved for (Σ, E ∪ B), so that

4

if (Σ, E ∪ B) is itself later extended, say, by (Σ, E ∪ B) ⊂ (Σ′, E′ ∪ B′), then Method 3
could again be applied to prove (Σ′, E′ ∪ B′) ground convergent.

We illustrate the use and effectiveness of Method 3 by solving a research challenge
that has been open since the 1980’s, namely, proving the ground confluence of an order-
sorted conditional specification of the rational numbers. In this case, (Σ, E ∪ B) is the
specification of the rationals, and (Σ0, E0 ∪ B0) the subspecification of the integers.

Paper organization. Preliminaries are gathered in Section 2. Method 1 is illustrated
in Section 3 by a hereditarily finite sets specification that does indeed run into a non-
orientability wall. Method 2’s inductive joinability inference system for ground con-
fluence is presented and proved sound in Section 4, and is illustrated by proving the
inductive joinability of the non-orientable critical pair from Section 3, thus illustrating
the Second Step. The effectiveness of Method 2 is further illustrated for the HF-SETS
example in Section 5. Method 3, its foundations, and its application to proving an
order-sorted specification of the rational numbers ground confluent are presented in
Section 6. Some related work and conclusions are discussed in Section 7. Various
auxiliary results needed for the mechanized proofs and for the proofs of ground con-
vergence of HF-SETS example and of the rational numbers specification are presented
in the Appendices.

Comparison with the Conference Paper [15]. In comparison with the conference paper
[15], which this paper substantially extends, the following are new contributions:

1. The appendices containing all auxiliary proofs for the mechanized inductive
proofs of Method 2 and for the HF-SETS example are new.

2. Section 6 on Method 3 is entirely new, and so are the various appendices needed
for the proofs of the rational numbers example.

3. The specification of the rational numbers example is also entirely new. Previous
such specifications extended the Peano natural numbers. Instead, the current
specification uses natural and integer addition with an associative-commutative
+ operator with 0 as unit for the entire number hierarchy, where +, 0 and 1 are the
constructors for the naturals. It has several important advantages, including the
existence of quite large subspecifications NAT-FVP and INT-FVP that have the
finite variant property [8, 18], and where satisfiability of quantifier-free formulas
in their initial algebras is decidable [27].

4. The Abstract and the Introduction and Related Work and Conclusions sections
have been substantially extended.

To make the main ideas of the paper more easily accessible, some technical details
and lengthy proofs have been made available in a technical report in [?].

2. Preliminaries

Notation on terms, term algebras, and equational theories is used as, e.g., in [21].
An order-sorted signature Σ is a tuple Σ = (S ,≤, F) with a finite poset of sorts (S ,≤)

5

and set of function symbols F typed with sorts in S . The binary relation ≡≤ denotes
the equivalence relation (≤ ∪ ≥)+ generated by ≤ on S and its point-wise extension to
strings in S ∗. The function symbols in F can be subsort-overloaded. For any sort s ∈ S ,
the expression [s] denotes the connected component of s, that is, [s] = [s]≡≤ . A top sort
in Σ is a sort s ∈ S such that for all s′ ∈ [s], s′ ≤ s. Let X = {Xs}s∈S be an S -indexed
family of disjoint variable sets with each Xs countably infinite. For any s ∈ S , let
X≤s =

⋃
s′∈S∧s′≤s Xs′ . The set of terms of sort s and the set of ground terms of sort s are

denoted, respectively, by TΣ(X)s and TΣ,s; similarly, TΣ(X) and TΣ denote, respectively,
the set of terms and the set of ground terms. TΣ(X) and TΣ denote the corresponding
order-sorted Σ-term algebras. All order-sorted signatures are assumed preregular [21],
i.e., each Σ-term t has a unique least sort ls(t) ∈ S s.t. t ∈ TΣ(X)ls(t). It is also assumed
that Σ has nonempty sorts, i.e., TΣ,s , ∅ for each s ∈ S . The set of variables of t is
written vars(t) and for a list of terms t1, . . . , tn, vars(t1, . . . , tn) = vars(t1)∪· · ·∪vars(tn).

A substitution is an S -indexed mapping θ ∈ [X −→ TΣ(X)] that is different from
the identity only for a finite subset of X and such that θ(x) ∈ TΣ(X)s if x ∈ Xs, for
any x ∈ X and s ∈ S . The expression θ|Y denotes the restriction of θ to a family of
variables Y ⊆ X. The domain of θ, denoted dom(θ), is the subfamily of X such that
x ∈ dom(θ) iff θ(x) , x, for each x ∈ X. If dom(θ) = {x1, . . . , xn} we write θ = {x1 7→

θ(x1), . . . , xn 7→ θ(xn)}. The range of θ is the set ran(θ) =
⋃
{vars(θ(x)) | x ∈ dom(θ)}.

Substitutions extend homomorphically to terms in the natural way. A substitution θ is
called ground iff ran(θ) = ∅. The application of a substitution θ to a term t is denoted
by tθ and the composition (in diagrammatic order) of two substitutions θ1 and θ2 is
denoted by θ1θ2, so that tθ1θ2 denotes (tθ1)θ2. A context C is a λ-term of the form
C = λx1, . . . , xn.c with c ∈ TΣ(X) and {x1, . . . , xn} ⊆ vars(c); it can be viewed as an
n-ary function (t1, . . . , tn) 7→ C(t1, . . . , tn) = cθ, where θ(xi) = ti for 1 ≤ i ≤ n and
θ(x) = x for x < {x1, . . . , xn}.

An equational theory is a tuple (Σ, E), with Σ an order-sorted signature and E a
finite collection of (possibly conditional) Σ-equations. An equational theory E = (Σ, E)
induces the congruence relation =E on TΣ(X) defined for t, u ∈ TΣ(X) by t =E u iff
E ` t = u, where E ` t = u denotes E-provability by the deduction rules for order-
sorted equational logic in [25]. For the purpose of this paper, such inference rules,
which are analogous to those of many-sorted equational logic, are even simpler thanks
to the assumption that Σ has nonempty sorts, which makes unnecessary the explicit
treatment of universal quantifiers. The expressions TE(X) and TE (also written TΣ/E(X)
and TΣ/E) denote the quotient algebras induced by =E on the term algebras TΣ(X) and
TΣ, respectively. TΣ/E is called the initial algebra of (Σ, E).

We assume acquaintance with the usual notions of position p in a term t, subterm t|p
at position p, and term replacement t[u]p at position p (see, e.g., [9]). A rewrite theory
is a tuple R = (Σ, E,R) with (Σ, E) an order-sorted equational theory and R a finite set
of possibly conditional Σ-rules, with conditions being a conjunction of Σ-equalities. A
rewrite theory R induces a rewrite relation→R on TΣ(X) defined for every t, u ∈ TΣ(X)
by t →R u iff there is a rule (l → r if φ) ∈ R, a term t′, a position p in t′, and a
substitution θ : X −→ TΣ(X) satisfying t =E t′ = t′[lθ]p, u =E t′[rθ]p, and (Σ, E) ` φθ.
The tuple TR = (TΣ/E ,→

?
R

), where, by definition,→?
R

=→+
R
∪ =E , where→+

R
denotes

the transitive closure of→R, is called the initial reachability model of R [4].

6

In this paper we will mostly focus on rewrite theories of the form RE = (Σ, B,
−→
E)

associated to an equational theory E = (Σ, E] B), were: (i) B are decidable structural
axioms whose equations u = v ∈ B are linear (no repeated variables in either u or v)
and regular (same variables in u and v), for which a matching algorithm exists, and
(ii) the possibly conditional rewrite rules

−→
E are strictly B-coherent [26]. Under such

assumptions, the rewrite relation t →RE u holds iff there exists u′ such that u′ =B u,
and t →−→

E ,B
u′, where, by definition, t →−→

E ,B
u′ iff there exists a rule (l→ r if φ) ∈

−→
E , a

position p in t and a substitution θ such that t|p =B lθ, u′ = t[rθ]p, and RE ` φθ. We will

assume throughout that the rules
−→
E are always strictly B-coherent. We finally assume

that the axioms B are: (i) sort-preserving, i.e., for each (u = v) ∈ B and substitution σ
we have ls(uσ) = ls(vσ); and (ii) term-size preserving2, i.e., if t =B t′, then |t| = |t′|.

Additional requirements are needed to make an equational theory E = (Σ, E] B)
admissible as an equational program, i.e., for making RE = (Σ, B,

−→
E) executable in

languages such as Maude [6]. In this paper, besides the above assumptions about B
and
−→
E , we assume that the rules in

−→
E are sort-decreasing, operationally terminating,

and ground confluent modulo B. The rewrite rules
−→
E are sort decreasing modulo B iff

for each (t → u if γ) ∈
−→
E and substitution θ, ls(tθ) ≥ ls(uθ) if RE ` γθ. Instead, the

rules
−→
E , assuming they are weakly terminating, are called ground sort-decreasing iff

for each ground term t there exists a term t′ such that t →!
−→
E ,B

t′ (where→!
−→
E ,B

denotes

rewriting to
−→
E , B-normal form) such that ls(t) ≥ ls(t′). RE = (Σ, B,

−→
E) is operationally

terminating modulo B [10] iff there is no infinite well-formed proof tree in (Σ, B,
−→
E).

Call t, t′ ∈ TΣ(X) joinable in RE, denoted t ↓RE t′ iff there exist u, v such that t →∗−→
E ,B

u, t′ →∗−→
E ,B

v, and u =B v. Call RE = (Σ, B,
−→
E) confluent (resp., ground confluent)

modulo B iff for all t, t1, t2 ∈ TΣ(X) (resp., for all t, t1, t2 ∈ TΣ), if t →∗−→
E ,B

t1 and

t →∗−→
E ,B

t2, then t1 ↓RE t2. For RE = (Σ, B,
−→
E) to have good executability properties as

a terminating equational program, the following requirements are needed : (a) ground
sort decreasingness, (b) operational termination, (c) ground confluence, and (d) strong
determinism, defined as follows:

Definition 1. Given a rewrite theory R = (Σ, B,R), a rule l → r if
∧

i=1..n ui → vi in R
is said to be deterministic iff (i) ∀ j ∈ [1..n], vars(u j) ⊆ vars(l) ∪

⋃
k< j vars(vk), and (ii)

vars(r) ⊆ vars(l) ∪
⋃

j≤n vars(v j). R is deterministic iff all its rules are so. A term t is
called strongly irreducible with respect to R modulo B (or strongly R, B-irreducible) iff
tσ is an R, B-normal form for every normalized substitution σ. A deterministic rewrite
theory R is called strongly deterministic iff for every rule l → r if

∧
i=1..n ui → vi in R

each vi is strongly R, A-irreducible.

2For combinations of associativity, commutativity, and identity axioms, this last condition only rules out
identity axioms. However, both for termination and confluence analysis purposes, identity axioms can always
be turned into convergent rewrite rules modulo associativity and/or commutativity axioms, as explained
in [12].

7

Note that conditions (a)–(d) essentially corresponds to the notion of an admissi-
ble Maude functional module in the sense of [6, Section 4.6]. That is, an admissible
conditional order-sorted Maude functional specification can be transformed into an
equivalent strongly deterministic rewrite theory by a very simple procedure, in which
equations are oriented as rewrite rules and equational conditions (ordinary ones and
so called matching equations) are transformed into rewrite conditions (see [13] for a
detailed algorithm). If conditions (a)–(d) are met, we call RE ground convergent. RE is
called convergent if it satisfies the stronger requirements of sort-decreasingness, oper-
ational termination, and ground confluence.

For a detailed inference system describing the operational semantics of convergent
and ground convergent rewrite theories, as well as the fact that convergent rewrite the-
ories satisfy the Church-Rosser property, that is, the equivalence: E ` t = t′ iff t ↓RE t′,
see [24]. Note also that, for RE ground convergent, Theorem 3 in [24] can be easily
adapted to yield a ground Church-Rosser equivalence E ` t = t′ iff t ↓RE t′, where now
t, t′ are ground terms.

Given a condition C = u1 → v1∧. . .∧un → vn, with Z = vars(C), and a substitution
θ ∈ [Z → TΣ(X)], we write (Σ, B,

−→
E) |= Cθ iff for each i, 1 ≤ i ≤ n, there exists a wi

such that uiθ −→
∗
−→
E ,B

wi∧wi =B viθ. Note that in a strongly deterministic rewrite theory

a rewrite step with a rule l → r if C and
−→
E , B-normalized substitution θ can take place

if and only if (Σ, B,
−→
E) |= Cθ.

3. Method 1: An Equational Specification for Hereditarily Finite Sets

When checking the confluence of an equational specification, the CRC tool [17, 14]
provides as result a set of critical pairs that cannot be joined automatically by its built-
in heuristics. They are proof obligations that can either be proved joinable or used
as guidance for modifying the input specification. The methodology proposed in [14]
for using the CRC tool suggests that critical pairs can help in identifying theorems of
the original specification which, when added to it, may lead to a confluent or ground
confluent specification. However, as the example of HF-SETS presented in this section
shows, the analysis of critical pairs to modify a specification, though a useful first strat-
egy, may be insufficient to make the specification ground confluent. Other techniques,
such as the ones presented in Section 4, may be needed.

Consider the specification of hereditarily finite sets in Figure 1, namely, of finite
sets whose elements are all hereditarily finite sets (see, e.g., [23]). The recursive defi-
nition of well-founded hereditary sets has the empty set as the base case and if s1, . . . , sk

are hereditarily finite, then so is {s1, . . . , sk}. These sets play a key role in axiomatic set
theory because they are a model of all the axioms of set theory except for the axiom
of infinity. Furthermore, as the methods developed in this work will show, the initial
model of the HF-SETS specification below is a consistent model of set theory without
the axiom of infinity.

The Church-Rosser check of the HF-SETSmodule using the CRC tool says that the
specification is sort-decreasing, but it cannot show that it is locally confluent, returning
eight critical pairs as proof obligations. At this point, there are two alternatives: either

8

fmod HF-SETS is
protecting BOOL-OPS .
sorts Magma Set .
subsort Set < Magma .
op _,_ : Magma Magma -> Magma [ctor assoc comm] .
op {_} : Magma -> Set [ctor] .
op {} : -> Set [ctor] .

vars M M’ : Magma .
vars S S’ : Set .

eq [01]: M, M = M .

op _in_ : Magma Set -> Bool . *** set membership
eq [11]: S in {S} = true .
eq [12]: S in {} = false .
eq [13]: {} in {{M}} = false .
eq [14]: {M} in {{}} = false .
eq [15]: {M} in {{M’}} = M in {M’} and M’ in {M} .
eq [16]: S in {S’, M} = S in {S’} or S in {M} .
eq [17]: (S, M) in S’ = (S in S’) and (M in S’) .

op _~_ : Set Set -> Bool . *** set equality
eq [21]: S ~ S’ = (S <= S’) and (S’ <= S) .

op _<=_ : Set Set -> Bool . *** set containment
eq [31]: {} <= S = true .
eq [32]: {M} <= S = M in S .

op _U_ : Set Set -> Set [assoc comm] . *** union
eq [41]: S U {} = S .
eq [42]: {M} U {M’} = {M, M’} .
eq [43]: S U {M} U {M’} = S U {M, M’} .

op P : Set -> Set . *** powerset
eq [51]: P({}) = {{}} .
eq [52]: P({S}) = {{},{S}} .
eq [53]: P({S, M}) = P({M}) U augment(P({M}), S) .

op augment : Set Set -> Set . *** augmentation
eq [61]: augment({}, S) = {} .
eq [62]: augment({S}, S’) = {{S’} U S} .
eq [63]: augment({M, M’}, S) = augment({M}, S) U augment({M’}, S) .

op _&_ : Set Set -> Set . *** intersection
eq [71]: {} & S = {} .
ceq [72]: {S} & S’ = {S} if S in S’ = true .
ceq [73]: {S} & S’ = {} if S in S’ = false .
ceq [74]: {S, M} & S’ = {S} U ({M} & S’) if S in S’ = true .
ceq [75]: {S, M} & S’ = {M} & S’ if S in S’ = false .

op <_;_> : Set Set -> Set . *** ordered pairs
op <_;_> : Magma Magma -> Magma . *** extension to magmas
eq [91]: < S ; S’ > = {S, {S, S’}} .
eq [92]: < S ; S’, M > = {S, {S, S’}}, < S ; M > .
eq [93]: < S, M ; M’ > = < S ; M’ >, < M ; M’ > .

op _X_ : Set Set -> Set . *** cartesian product
eq [101]: {} X S = {} .
eq [102]: S X {} = {} .
eq [103]: {M} X {M’} = {< M ; M’ >} .

endfm

Figure 1: Equational specification of hereditarily finite sets in Maude

9

(i) we try to prove the ground joinability of these critical pairs to conclude that the
specification is locally ground confluent, or (ii) we follow the iterative strategy pro-
posed in [14] to get a locally confluent specification or at least reduce the number of
critical pairs for which a proof of joinability is necessary. In the rest of this section, we
explore the second alternative. The first alternative will be revisited after the second
one is exhausted (both are useful) in Section 5.

The following one is one of the critical pairs returned by the check:

cp HF-SETS1123 for 11 and 15
true = M’:Magma in {M’:Magma} .

It comes from the overlap of equations 11 and 15. Although there are equations for all
possible instances of the term M in {M}, Maude cannot reduce it as magmas. We can
attempt adding equations to reduce it as follows:

fmod HF-SETS-0 is
protecting HF-SETS .
vars M M’ : Magma .
eq [18]: M in {M} = true .
eq [19]: M in {M’, M} = true .

endfm

A check of the Church-Rosser property for HF-SETS-0 returns seven critical pairs.
Let us consider one of these critical pairs:

cp HF-SETS-095 for 01 and 63
augment({M’:Magma}, S:Set) = augment({M’:Magma}, S:Set) U augment({M’:Magma}, S:Set) .

This critical pair comes from the overlap of equations 01 and 63. Indeed, this critical
pair cannot be further reduced because there is no idempotency equation for the union
operator on sets. We can see the same problem in other four of the critical pairs reported
by the tool. Although S U S = S could be proven in HF-SETS-0, there is the alternative
option of extending the specification with an idempotency equation for set union.

fmod HF-SETS-1 is
protecting HF-SETS-0 .
var S : Set .
eq [44]: S U S = S .

endfm

The Church-Rosser checker tool produces the following output for HF-SETS-1:

The following critical pairs must be proved joinable:
cp HF-SETS-118 for 53 and 53
P({#6:Magma}) U augment(P({#6:Magma}), S:Set) U augment(P({#6:Magma}) U
augment(P({#6:Magma}), S:Set), #1:Set)

= P({#6:Magma}) U augment(P({#6:Magma}), #1:Set) U augment(P({#6:Magma}) U
augment(P({#6:Magma}), #1:Set), S:Set).

cp HF-SETS-1355 for 01 and 53
P({#3:Magma}) U augment(P({#3:Magma}), S:Set)

= P({#3:Magma}) U augment(P({#3:Magma}), S:Set) U augment(P({#3:Magma}) U
augment(P({#3:Magma}), S:Set), S:Set).

The module is sort-decreasing.

A careful study of these critical pairs suggests the need for an equation to apply aug-
ment over the union operator.

fmod HF-SETS-2 is
protecting HF-SETS-1 .

10

vars S S’ T : Set .
eq [64]: augment(S U S’, T) = augment(S, T) U augment(S’, T) .

endfm

The number of critical pairs gets further decreased in HF-SETS-2, but two remain:

The following critical pairs must be proved joinable:
cp HF-SETS-218 for 53 and 53
P({#6:Magma}) U augment(P({#6:Magma}), S:Set) U augment(P({#6:Magma}), #1:Set) U
augment(augment(P({#6:Magma}), S:Set), #1:Set)

= P({#6:Magma}) U augment(P({#6:Magma}), S:Set) U augment(P({#6:Magma}), #1:Set) U
augment(augment(P({#6:Magma}), #1:Set), S:Set).

cp HF-SETS-2411 for 01 and 53
P({#3:Magma}) U augment(P({#3:Magma}), S:Set)

= P({#3:Magma}) U augment(P({#3:Magma}), S:Set)
U augment(augment(P({#3:Magma}), S:Set), S:Set).

The module is sort-decreasing.

The second critical pair suggests the need for an equation handling the repeated
application of the augment operator.

fmod HF-SETS-3 is
protecting HF-SETS-2 .
vars S T : Set .
eq [65]: augment(augment(S, T), T) = augment(S, T) .

endfm

However, one critical pair remains in HF-SETS-3:

Church-Rosser check for HF-SETS-3
The following critical pairs must be proved joinable:
cp HF-SETS-318 for 53 and 53
P({#6:Magma})U augment(P({#6:Magma}),S:Set)U augment(P({#6:Magma}),#1:Set)U
augment(augment(P({#6:Magma}),S:Set),#1:Set)

= P({#6:Magma})U augment(P({#6:Magma}),S:Set)U augment(P({#6:Magma}),#1:Set)U
augment(augment(P({#6:Magma}),#1:Set),S:Set).

The module is sort-decreasing.

It is not obvious at all how to eliminate this critical pair, since adding the equation

eq augment(augment(S, S’), T) = augment(augment(S, T), S’) .

would make the specification non-terminating. This suggests that the second approach,
i.e., the strategy of trying to complete the specification by analyzing the unjoinable
critical pairs has now been exhausted. However, the original problem has now been
reduced to a single critical pair. At this point, the best approach is to prove the inductive
joinability of the critical pair HF-SETS-318 obtained in the check of HF-SETS-3, and
thus conclude that the specification is ground locally confluent. Section 4 presents
techniques for carrying out such inductive proofs. Indeed, it will also present results
showing that the original specification was already ground confluent!, without the need
for the extra equations added in the process. The specification is terminating. Indeed,
the MTT tool [11, 17] is able to find termination proofs for all the versions of the
HF-SETS module, and specifically for HF-SETS-3 (see [? , Appendix B]). A proof of
the sufficient completeness of the specification can be found in [? , Appendix C].

Finally, note that if an added equation comes from orienting a critical pair, it is
a logical consequence of the specification and therefore the new specification has the
same initial model of the old one. Although the additional equations added during the
process may not be those obtained from critical pairs as such, proving that they are

11

ground joinable is enough to show that they are actually inductive lemmas, and there-
fore —as explained in more detail in Theorem 6 in Section 4— that they both preserve
the initial algebra semantics and can be removed from the original specification.

4. Method 2: Proving Ground Joinability

This section presents inductive techniques for proving ground joinability for rewrite
theories associated to equational specifications. These techniques are presented as
meta-theorems about the ground reachability relation induced by a rewrite theory and
are used to justify the inference system also presented in this section.

Definition 2. Let R be a rewrite theory with signature Σ = (S ,≤, F) and t, u ∈ TΣ(X)s

for some s ∈ S . The terms t and u are called:

1. R-joinable, writtenR ` (∀X) t ↓ u, iff there is v ∈ TΣ(X)s such thatR ` (∀X) t →?

v and R ` (∀X) u→? v.

2. ground R-joinable, written R
 (∀X) t ↓ u, iff R ` tθ ↓ uθ for all ground
substitutions θ ∈ [X −→ TΣ].

The authors of [30] investigate constructor-based inductive techniques for proving
ground joinability. They distinguish two notions of constructors for a rewrite theory R,
namely, one for the equations and another one for the rules in R.

Definition 3 (Defs. 5 and 6 [30]). Let R = (Σ, E,R) be a rewrite theory with underlying
equational theory E = (Σ, E). A constructor signature pair for R is a pair (Υ,Ω)
of order-sorted subsignatures Υ = (S ,≤, FΥ) ⊆ Ω = (S ,≤, FΩ). The sets of terms
TΥ = {TΥ,s}s∈S and TΩ = {TΩ,s}s∈S are called, respectively, E-constructor terms and
R-constructor terms. The rewrite theory R is called:

1. E-sufficiently complete relative to Ω iff (∀s ∈ S)(∀t ∈ TΣ,s)(∃u ∈ TΩ,s) E ` t = u.

2. R-sufficiently complete relative to Υ iff (∀s ∈ S)(∀t ∈ TΣ,s)(∃v ∈ TΥ,s) R ` t →?

v.

3. sufficiently complete relative to (Υ,Ω) iff (1) and (2) hold.

The notion of sufficient completeness for a rewrite theory R relative to a constructor
signature pair (Υ,Ω) is that Ω ⊆ Σ are the constructors for the equations and Υ ⊆ Ω

the constructors for the rules, thus including the standard concept of constructor for
equational specifications as a special case. The intuition behind equational constructor
terms is that any ground Σ-term should be provably equal to a term in TΩ and for rewrite
constructors that any Σ-term should be rewritable to a term in TΥ.

It is sufficient to consider all R-constructor terms in TΥ,s when inducting on a vari-
able x of sort s, for a proof on inductive joinability in R to be sound.

Theorem 1 (Thm. 6 [30]). Let R be a rewrite theory with signature Σ = (S ,≤, F) and
t, u ∈ TΣ(X)s for some s ∈ S . If R is sufficiently complete relative to the constructor
signature pair (Υ,Ω), then R
 (∀X) t ↓ u iff (∀η ∈ [X −→ TΥ]) R ` tη ↓ uη.

12

R ` (∀X) t ↓ u

R
 (∀X) t ↓ u
Join

R
 (∀X) t ↓ u

R
 (∀X) C[t] ↓ C[u]
Ctx

R
 (∀X) t ↓ u

R
 (∀X) tθ ↓ uθ
Gral

Figure 2: Inference rules for proving joinability for a rewrite theory R by rewrite-based reasoning, and
inductive reasoning for contexts and substitution instances.

Figure 2 presents the Join, Ctx and Gral inference rules for proving joinability
for a rewrite theory R, respectively, by rewrite-based reasoning, inductive reasoning
under contexts, and generalization. The soundness of the Join rule is straightforward to
obtain, while Theorem 2 justifies the soundness of the Ctx and Gral rules. This result
can be used to simplify the complexity of terms to be joinable if they share a common
context.

Theorem 2. Let R be a rewrite theory with signature Σ = (S ,≤, F) and C[t],C[u] ∈
TΣ(X)s for some s ∈ S . If R
 (∀X) t ↓ u, then:

1. R
 (∀X) C[t] ↓ C[u];

2. R
 (∀X) tθ ↓ uθ, for any substitution θ ∈ [X −→ TΣ(X)].

Proof. The two properties follow from the fact that the rewrite relation →R is closed
under contexts and substitutions. �

Since the goal is to prove ground joinability of a rewrite theory of the form RE =

(Σ, B,
−→
E) associated to an equational theory E = (Σ, E]B), such as that for hereditarily

finite sets presented in Section 3, the most appropriate notion of constructor is that of
RE-constructors. More precisely, a constructor signature pair for RE has always the
form (Υ,Σ) because the only equations in RE are the axioms B not associated to any
rewriting. Hence, RE sufficient completeness is always relative only to Υ. One more
remark is important for what follows. As pointed out in Section 2, we assume that
RE = (Σ, B,

−→
E) is admissible (except for its ground confluence, which may remain to

be proved). In particular this means that RE is strictly B-coherent in the sense of [26].
Therefore, the two notions of joinability (resp. ground joinability) involved, namely
the one in Def. 2, and that defined in terms of the rewrite relation →−→

E ,B
in Section

2 actually coincide (see [26]). We will implicitly use this agreement between both
notions in what follows.

Reasoning about ground joinability requires inductive inference support, e.g., in
the form of a constructor-based scheme using finite generating sets.

Definition 4. Let E = (Σ, E] B) be an equational theory, with Σ = (S ,≤, F), such
that the rewrite theory RE is weakly terminating, ground sort-decreasing, and has sub-
signature Υ of RE-constructors. Further, let s ∈ S . A set Gs ⊆ TΥ,s(X) is a (finite)
generating set for s modulo B iff Gs is finite, Gs ∩ X = ∅, and

TΥ/B,s =
⋃

w∈Gs

{[wσ]B | σ ∈ [vars(w) −→ TΥ]} .

The following induction scheme is sound for inferring ground joinability in RE.

13

Theorem 3. Let RE be a weakly terminating and ground sort-decreasing rewrite the-
ory, with signature Σ = (S ,≤, F) and subsignature Υ of RE-constructors. Moreover, let
t, u ∈ TΣ(X), x ∈ vars(t, u) ∩ Xs for some s ∈ S , and Gs a generating set for s modulo
B, such that (without loss of generality) vars(Gs) ∩ vars(t, u) = ∅. Then:

If RE
 (∀X)
∧

w∈Gs

 ∧
y∈vars(w)∩X≤ s

(t ↓ u){x 7→ y}

⇒ (t ↓ u){x 7→ w},

then RE
 (∀X) t ↓ u.

Proof. By contradiction. Suppose the antecedent holds, but there is a ground substitu-
tion σ ∈ [vars(t, u) −→ TΣ] such that RE 0 (t ↓ u)σ. Note, however, that by

−→
E being

strict B-coherent and Gs being a generating set for s modulo B, σ is always of the form
σ =B {x 7→ w}τ, for some w ∈ Gs and substitution τ, and then we have

RE 0 (t ↓ u)σ iff RE 0 (t ↓ u){x 7→ w}τ.

Consider now the non-empty set of ground terms
{wτ | w ∈ Gs ∧ τ ∈ [Yw −→ TΣ] ∧ RE 0 (t ↓ u){x 7→ w}τ}

where Yw = (vars(t, u) \ {x}) ∪ vars(w). Pick wτ0 of smallest term size possible in the
above set. By the strict B-coherence of

−→
E and the assumption that the axioms B are

size-preserving, this means that for any ground substitution σ ∈ [vars(t, u) −→ TΣ],
such that RE 0 (t ↓ u)σ, we must have |σ(x)| ≥ |wτ0|. In particular, since w ∩ X = ∅,
this means that for each y ∈ vars(w) ∩ X≤s we must have |τ0(y)| < |wτ0| and therefore
RE ` (t ↓ u){x 7→ y}τ0. But, by hypothesis this implies RE ` (t ↓ u){x 7→ w}τ0, a
contradiction. �

It is also sound to reason about ground joinability in RE using case analysis based
on the RE-constructor signature Υ.

Theorem 4. Let RE be a weakly terminating and ground sort-decreasing rewrite the-
ory, with signature Σ = (S ,≤, F) and subsignature Υ of RE-constructors. Moreover, let
t, u ∈ TΣ(X), x ∈ vars(t, u) ∩ Xs for some s ∈ S , and Gs a generating set for s modulo
B, such that (without loss of generality) vars(Gs) ∩ vars(t, u) = ∅. Then:

RE
 (∀X) t ↓ u iff RE
 (∀X)
∧

w∈Gs

(t ↓ u){x 7→ w}.

Proof. If RE
 (∀X) t ↓ u, then clearly RE
 (∀X)
∧

w∈Gs
(t ↓ u){x 7→ w}. For the

proof in the opposite direction, let σ ∈ [X −→ TΣ] be such that RE 0 (t ↓ u)σ: the
goal is to show that RE 1 (∀X)

∧
w∈Gs

(t ↓ u){x 7→ w}, for some w ∈ Gs. Since Gs is a
generating set for the sort s and x ∈ Xs, then there is w ∈ Gs and ρ ∈ [X −→ TΣ] such
that σ(x) =B wρ. Let σ′ = σ|vars(t,u)\{x}] ρ and observe that σ′ is well-defined because
of the assumption vars(Gs) ∩ vars(t, u) = ∅. Furthermore, observe:

(t ↓ u)σ = (t ↓ u){x 7→ σ(x)}σ|vars(t,u)\{x}

=B (t ↓ u){x 7→ wρ}σ|vars(t,u)\{x}

= (t ↓ u){x 7→ w}(σ|vars(t,u)\{x}] ρ)
= (t ↓ u){x 7→ w}σ′.

Hence, by the strict B-coherence of
−→
E , we must have RE 1 (∀X)

∧
w∈Gs

(t ↓ u){x 7→
w}. �

14

RE
 (∀X)
∧

w∈Gs

 ∧
y∈vars(w)∩X≤s

(t ↓ u){x 7→ y}

⇒ (t ↓ u){x 7→ w}

RE
 (∀X) t ↓ u
GSInd

RE
 (∀X)
∧

w∈Gs

(t ↓ u){x 7→ w}

RE
 (∀X) t ↓ u
CtorCases

Figure 3: Inference rules for proving ground joinability for a rewrite theory RE with RE-constructors Υ

by induction relative to the generating set Gs and by constructor-based case analysis on a variable x ∈
vars(t, u) ∩ Xs.

This concludes the inference system for proving ground joinability. However, an
important practical issue remains: how should the checking of R ` (∀X) t ↓ u used
in inference rule Join be best mechanized? After all, t ↓ u is a somewhat complex
relation, involving existential quantification. This issue can be satisfactorily addressed
by means of a program transformation RE 7→ R≈E that extends the possibly conditional
and operationally terminating rewrite theory RE, associated to an equational theory
E = (Σ, E] B), to a theory R≈

E
with: (i) a new sort Prop with constant tt and (ii) a new

operator _ ≈ _ with the rule x ≈ x→ tt, such that
RE ` (∀X) t ↓ u iff R≈E ` (∀X) t ≈ u→? tt.

Since the right side of the equivalence is a reachability property and the transformation
RE 7→ R

≈
E

preserves operational termination, the theory R≈
E

and Maude’s search com-
mand can be used to check that R ` (∀X) t ↓ u. This is used in the Example 1 below,
where the binary function symbol join implements the operator _ ≈ _. The precise
description of the RE 7→ R≈E transformation is given in Appendix D.

Example 1. Recall from Section 3 the only critical pair output by the CRC tool for the
HF-SETS-3 specification; the goal is to prove:

HF-SETS-3
 (∀M :Magma; S ,T :Set) t(M, S ,T) ↓ u(M, S ,T)

where

t(M, S ,T) = P({M}) ∪ augment(P({M}), S) ∪ augment(P({M}),T)

∪ augment(augment(P({M}), S),T)

u(M, S ,T) = P({M}) ∪ augment(P({M}), S) ∪ augment(P({M}),T)

∪ augment(augment(P({M}),T), S)

By the Ctx rule it suffices to prove:

HF-SETS-3
 (∀M :Magma; S ,T :Set)

augment(augment(P({M}), S),T) ↓ augment(augment(P({M}),T), S)

Moreover, since P({M}) has sort Set, this statement can be proved by considering a

15

stronger property, namely, by using the Gral rule and proving:

HF-SETS-3
 (∀S , S ′,T :Set) augment(augment(S ′, S),T) ↓ augment(augment(S ′,T), S)

This proof obligation can be dealt with by using the CtorCases rule on S ′ ∈ XSet with
generating set GSet = {{}, {M}} and M ∈ XMagma. This rule application results in the
following two proof obligations:

HF-SETS-3
 (∀S ,T :Set) augment(augment({}, S),T) ↓ augment(augment({},T), S)

HF-SETS-3
 (∀S ,T :Set; M :Magma)

augment(augment({M}, S),T) ↓ augment(augment({M},T), S)

The first proof obligation can be discharged by a search command in R≈HF-SETS-3:

search in HF-SETS-3-REACH :
join(augment(augment({{}}, S), T), augment(augment({{}}, T), S)) =>! tt .

Solution 1 (state 1)

The second proof obligation can be handled using the GSInd rule on M ∈ XMagma with
generating set GMagma = {S ′, (S ′,M′)}, S ′ ∈ XSet, and M′ ∈ XMagma:

HF-SETS-3 ` (∀S , S ′,T :Set)

augment(augment({S ′}, S),T) ↓ augment(augment({S ′},T), S)

HF-SETS-3 ` (∀S , S ′,T :Set; M′ :Magma)

ψ⇒ augment(augment({S ′,M′}, S),T) ↓ augment(augment({S ′,M′},T), S)

where ψ is the formula:
augment(augment({S ′}, S),T) ↓ augment(augment({S ′},T), S) ∧
augment(augment({M′}, S),T) ↓ augment(augment({M′},T), S).

For the first one of these two proof obligations, a proof can be found as follows:

search in HF-SETS-3-REACH :
join(augment(augment({S’}, S), T), augment(augment({S’}, T), S)) =>! tt .

Solution 1 (state 14)

For the second proof obligation, it suffices to rewrite both terms in the consequent of
the implication and use the second conjunct in ψ, together with the Join and Ctx, to
join the resulting terms:

search in HF-SETS-3-REACH : augment(augment({M’,S’}, S), T) =>! X:Set .
Solution 1 (state 6)
X:Set --> {S’ U {S,T}} U augment(augment({M’}, S), T)

search in HF-SETS-3-REACH : augment(augment({M’,S’}, T), S) =>! X:Set .
Solution 1 (state 6)
X:Set --> {S’ U {S,T}} U augment(augment({M’}, T), S)

Therefore, all critical pairs of HF-SETS-3 are ground joinable; hence, HF-SETS-3 is
ground convergent, as desired.

But is the original specification HF-SETS itself ground convergent? That is, can the
extra equations in HF-SETS-3 just be used as scaffolding and then be removed as unnec-
essary? The following result shows that, if the successive addition of oriented equalities

16

leads us to a ground convergent theory and such equalities are ground joinable, then
the added equations are indeed unnecessary. The main idea is that, starting from an
equational specification E0, if a sequence of equational theories E0 ⊆ E1 ⊆ · · · ⊆ En

can be built by incrementally adding new equations (e.g., suggested by the analysis
of critical pairs between the equations), and if the new equations added at each step
can be shown ground joinable, then the ground confluence of En implies the ground
confluence of each Ei, and in particular of E0.

Theorem 5. Let (Σ, E0] B) ⊆ (Σ, E1] B) where
−→
E0, B is sufficiently complete with

respect to a subsignature Ω, (Σ, E1] B) is ground convergent, →−→
E0,B
|Ω = →−→

E1,B
|Ω,

and all equations in E1 − E0 are ground E0, B-joinable. Then,(
→!
−→
E0,B

; =B

)
|TΣ

=

(
→!
−→
E1,B

; =B

)
|TΣ
.

That is, the normal forms of the rewriting relation modulo B restricted to the initial
term algebra TΣ coincide.

Proof. First of all note that, since
−→
E0 ⊆

−→
E1, (Σ, B,

−→
E0) is operationally terminating.

Consider some t ∈ TΣ and rewrite t →!
−→
E1,B

u. Since
−→
E0, B is sufficiently complete and

→−→
E0,B
|Ω =→−→

E1,B
|Ω, u ∈ TΩ. If all rules applied in the chain are in

−→
E0, then the chains

obviously coincide. Otherwise, let us consider the first rewrite step using a rule in
−→
E1 −

−→
E0:

t
−→
E0,B

∗ //
−→
E1−
−→
E0,B

//

−→
E0,B

!
!!

−→
E1,B

! //

−→
E0,B

!}}

u

v
B

w

First, we have v =B w by ground joinability of equations in E1 − E0. Then, by the
assumption that→−→

E0,B
|Ω =→−→

E1,B
|Ω, u and w are in E1, B-canonical form, and by the

ground confluence of
−→
E1, B we must have u =B w. Therefore, we can conclude that

→!
−→
E0,B

; =B |TΣ
=→!

−→
E1,B

; =B |TΣ
, as desired. �

Theorem 6. Suppose (Σ, E0] B) ⊆ . . . ⊆ (Σ, En] B), with n ≥ 0, such that
−→
E0] B

is sufficiently complete with respect to a subsignature Ω,
−→
En] B is ground convergent,

(→−→
E0,B

)|Ω = (→−→
En,B

)|Ω, and all Ei+1 − Ei are ground Ei-joinable modulo B. Then, each
(Σ, Ei] B) is ground convergent, for 0 ≤ i ≤ n. Furthermore, all theories in the chain
have the same initial algebra.

Proof. By induction on n. It is trivial for n = 0. Suppose it true for n, and let us prove
it true for n + 1. Given a chain (Σ, E0] B) ⊆ (Σ, E1] B) ⊆ . . . ⊆ (Σ, En] B), by
the induction hypothesis —plus the fact that (Σ, E0] B) sufficiently complete makes
(Σ, E1] B) so as well— we get that (Σ, E1] B) is ground convergent. The proof that
(Σ, E0] B) is ground convergent is as follows. Since (Σ, E1] B) is ground convergent,
(Σ, E0]B) is a fortiori sort-decreasing and operationally terminating, so all we need to

17

prove is its ground confluence. But since, by Theorem 5,→!
−→
E0,B

; =B |TΣ
=→!

−→
E1,B

; =B |TΣ
,

the following diagram proves ground confluence of→−→
E0,B

:

t

−→
E0,B

∗
{{

−→
E1,B

!

−→
E1,B

!
��

−→
E0,B

∗
##

u

−→
E0,B

!��

= = v

−→
E0,B

! ��
u′

B
v′

Note that u′ =B v′ by ground confluence of→−→
E1,B

.
Finally, we already know by the Induction Hypothesis that all the theories

(Σ, E1] B) ⊆ · · · ⊆ (Σ, En] B)
have the same initial algebra, and, by ground-joinability of E1 − E0, that

TΣ/E0]B |= E1 − E0.

Therefore, we also get TΣ/E0]B = TΣ/E1]B, as desired. �

Theorem 6 justifies the view of the new equations suggested by critical pairs ob-
tained, say, from the CRC tool, as hints for extending our original specification as
“scaffolding” that can be abandoned after we have reached a ground convergent exten-
sion (Σ, En] B). Going back to the example in Section 3, once the HF-SETS-3 module
has been proven ground convergent, we can conclude that the original HF-SETS spec-
ification is also ground convergent, provided we can show that the equations added
at stage i + 1 were ground joinable relative to stage i. This is shown to be the case
in Section 5 by providing proofs of ground joinability for the five equations added in
HF-SETS-0, HF-SETS-1, HF-SETS-2, and HF-SETS-3 in Section 3.

5. Proving the Ground Convergence of HF-SETS with Method 2

The goal of this section is to conclude that the equational specification HF-SETS
presented in Section 3 is ground convergent, and therefore that its initial model is a
model of set theory without the axiom of infinity. The key tools for achieving this goal
are the inference system for inductive joinability and Theorem 6, both presented in
Section 4. By knowing that RHF-SETS-3 is terminating (see [? , Appendix B]), sort de-
creasing (Section 3), and that HF-SETS is sufficiently complete (see [? , Appendix C]),
the conditions in Theorem 6 apply and we just need to show the ground joinability of
the added equations.

That is, since HF-SETS-3 is ground convergent and the theory inclusions
HF-SETS ⊆ HF-SETS-0 ⊆ HF-SETS-1 ⊆ HF-SETS-2 ⊆ HF-SETS-3

satisfy the requirements of Theorem 6, it suffices to prove
HF-SETS
 (∀M :Magma) M ∈ {M} ↓ true

HF-SETS
 (∀M,M′ :Magma) M ∈ {M,M′} ↓ true

HF-SETS-0
 (∀S :Set) S ∪ S ↓ S

HF-SETS-1
 (∀S , S ′,T :Set) augment(S ∪ S ′,T) ↓ augment(S ,T) ∪ augment(S ′,T)

18

HF-SETS-2
 (∀S ,T :Set) augment(augment(S ,T),T) ↓ augment(S ,T)
in order to conclude that HF-SETS is ground convergent. In what follows, detailed
proofs are provided for the last three proof obligations. The first two properties can be
proved by following a similar approach.

The third proof obligation is dealt with by using the CtorCases rule on S ∈ XSet

with generating set GSet = {{}, {M}} and M ∈ XMagma:
HF-SETS-0
 {} ∪ {} ↓ {}

HF-SETS-0
 (∀M :Magma) {M} ∪ {M} ↓ {M}
These two proof obligations can be automatically discharged by Maude in R≈HF-SETS-0:

search in HF-SETS-0-REACH : join({} U {}, {}) =>! tt .
Solution 1 (state 2)

search in HF-SETS-0-REACH : join({M} U {M}, {M}) =>! tt .
Solution 1 (state 3)

Next, for the fourth proof obligation, several inference steps are needed. First, the
CtorCases rule is used on S Set with generating set GSet = {{}, {M}} and M ∈ XMagma,
resulting in the following proof obligations:

HF-SETS-1
 (∀S ′,T :Set) augment({} ∪ S ′,T) ↓ augment({},T) ∪ augment(S ′,T)
HF-SETS-1
 (∀S ′,T :Set; M :Magma)

augment({M} ∪ S ′,T) ↓ augment({M},T) ∪ augment(S ′,T)
For the second one of these two proof obligations, the CtorCases rule on S ′ ∈ XSet

with generating set H′Set = {{}, {M′}} and M′ ∈ XMagma is used; this transforms the
second proof obligation in the following two proof obligations:

HF-SETS-1
 (∀T :Set; M :Magma)
augment({M} ∪ {},T) ↓ augment({M},T) ∪ augment({},T)

HF-SETS-1
 (∀T :Set; M,M′ :Magma)
augment({M} ∪ {M′},T) ↓ augment({M},T) ∪ augment({M′},T)

The remaining three proof obligations can be automatically discharged by Maude in
R≈HF-SETS-1 as follows:

search in HF-SETS-1-REACH : join(augment({} U S’, T), augment({}, T) U augment(S’, T)) =>! tt .
Solution 1 (state 6)

search in HF-SETS-1-REACH :
join(augment({} U {M}, T), augment({}, T) U augment({M}, T)) =>! tt .

Solution 1 (state 6)

search in HF-SETS-1-REACH :
join(augment({M} U {M’}, T), augment({M}, T) U augment({M’}, T)) =>! tt .

Solution 1 (state 3)

The fifth, and last proof obligation, is dealt with by using the CtorCases rule on
S ∈ XSet with generating set GSet = {{}, {M}} and M ∈ XMagma. This rule application
results in the following two proof obligations:

HF-SETS-2
 (∀T :Set) augment(augment({},T),T) ↓ augment({},T)

19

HF-SETS-2
 (∀T :Set; M :Magma)
augment(augment({M},T),T) ↓ augment({M},T)

The first proof obligation can be discharged automatically:

search in HF-SETS-2-REACH : join(augment(augment({}, T), T), augment({}, T)) =>! tt .
Solution 1 (state 4)

The remaining proof obligation can be handled with the help of the GSInd rule with
generating set GMagma = {S ′, (S ′,M′)}, S ′ ∈ XSet and M′ ∈ XMagma:

HF-SETS-2
 (∀S ′,T :Set) augment(augment({S ′},T),T) ↓ augment({S ′},T)

HF-SETS-2
 (∀ S ′,T :Set; M′ :Magma)

ψ⇒ augment(augment({S ′,M′},T),T) ↓ augment({S ′,M′},T)

where ψ is the formula:

augment(augment({S ′},T),T) ↓ augment({S ′},T)

∧ augment(augment({M′},T),T) ↓ augment({M′},T).

These two proof obligations can be solved with the help of Maude:

search in HF-SETS-2-REACH : join(augment(augment({S’}, T), T), augment({S’}, T)) =>! tt .
Solution 1 (state 10)

search in HF-SETS-2-REACH : augment(augment({M’,S’}, T), T) =>! X:Set .
Solution 1 (state 7)
X:Set --> {S’ U {T}} U augment(augment({M’}, T), T)

search in HF-SETS-2-REACH : augment({M’,S’}, T) =>! X:Set .
Solution 1 (state 2)
X:Set --> {S’ U {T}} U augment({M’}, T)

Note that the terms obtained by the last two search commands can be joined by assum-
ing ψ.

The initial goal has now been reached. Namely, since all the equations added in the
process of building the tower of theory inclusions

HF-SETS ⊆ HF-SETS-0 ⊆ HF-SETS-1 ⊆ HF-SETS-2 ⊆ HF-SETS-3

have been shown ground joinable, Theorem 6 guarantees that the equational specifica-
tion HF-SETS for hereditarily finite sets is ground convergent.

6. Method 3: Hierarchical Conditional Ground Joinability Techniques

So far we have only considered unconditional ground joinability problems. How-
ever, since we allow equational theories to be conditional and their associated rewrite
theories to be strongly deterministic, in general to prove that a rewrite theory is ground
confluent will require us to prove that certain conditional critical pairs are ground join-
able. To make the exposition self-contained, let us recall the basic notions from [14],
where a detailed exposition of order-sorted conditional confluence issues can be found.

20

Definition 5. Given an order-sorted equational specification (Σ, B,
−→
E) that is strongly

deterministic in the sense explained in Section 2, and given (possibly renamed) con-
ditional rewrite rules l → r if C and l′ → r′ if C′ in

−→
E such that vars(l → r if C) ∩

vars(l′ → r′ if C′) = ∅ and l|pσ =B l′σ, for some nonvariable position p ∈ P(l) and
B-unifier σ ∈ UnifB(lp, l′), then the triple

C σ ∧C′σ⇒ (l[r′]p)σ = rσ

is called a conditional critical pair (CCP). Assuming that (Σ, B,
−→
E) is weakly termi-

nating, we call such a CCP ground-joinable iff for each ground substitution θ of all
variables appearing in such a CCP and such that (Σ, B,

−→
E) |= (C σ ∧ C′σ)θ we have

(Σ, B,
−→
E) |= (lσ[r′σ]p)θ ↓ rσθ.

A key question is what proof techniques can be used to prove that a CCP is ground
joinable. Certainly, it will be so if we can show that it is context-joinable or unfeasible
in the sense explained in [2, 14], since then the CCP is actually joinable or unfeasible.
But since these techniques aim at proving the stronger property of joinability (they are
actually used in Maude’s Church-Rosser Checker [14]), they are usually insufficient
for proving ground joinability.

Two complementary options suggest themselves quite naturally. On the one hand,
we can generalize the ground joinability inference system of Section 4 to reason about
inductive conditional joinability. On the other, we can develop hierarchical methods
that allow us to reason in a modular way. Suppose that the order-sorted equational spec-
ification (Σ, B,

−→
E) imports an equational subspecification (Σ0, B0,

−→
E0) in a conservative

way—to be made precise in what follows. Furthermore suppose that: (i) (Σ0, B0,
−→
E0)

has already been shown ground convergent; and (ii) the CCP in question has been ob-
tained by overlapping rules l→ r if C and l′ → r′ if C′ in

−→
E such that their conditions C

and C′ are Σ0-conditions. Then, under appropriate requirements, we may be able to use
the fact that the ground version of the Church-Rosser Theorem holds for the equational
specification (Σ0, B0,

−→
E0) to reason inductively about the properties of the Σ0-subterms

appearing in the two sides of the CCP under the assumption that its Σ0-condition holds
for a given ground substitution to prove the CCP’s ground joinability.

6.1. A Rational Numbers Example

To give an intuition for what this hierarchical proof technique can look like, let us
consider the RAT-ACU module in Figure 4 that specifies the rational numbers. RAT-ACU
imports a sub-specification INT-ACU of the integers that has already been proved not
just ground convergent, but actually convergent. As we shall see, INT-ACU is imported
by RAT-ACU in a conservative manner to be made precise later. The entire number
hierarchy specification can be found in Appendix E.

Proving the ground confluence of RAT-ACU or a similar algebraic specification of
the field of rational numbers is an outstanding open problem in algebraic specification.
First of all, note that, to avoid the problem of division by zero, the use of a subsort NzRat
< Rat is essential. Second, since the rationals are such an important data type, order-
sorted specifications of them have always been used in OBJ [20], CafeOBJ [19], and
Maude [6], and have always been considered as important benchmarks in order-sorted

21

algebra (see, e.g., the Appendix in [21]). However, proving the ground confluence of an
order-sorted specification of the rationals has eluded previous efforts since the 1980s.

In the RAT-ACU specification there is only one conditional rule, namely, RAT-ACU-
02, which puts a fraction in canonical form by dividing its numerator and denominator
by their greater common denominator (gcd). Since this conditional rule packs a lot of
arithmetic knowledge into a single punch, it is not surprising at all that it generates quite
a number of critical pairs that cannot be joined by standard techniques, because such
arithmetic knowledge is only implicit in the equational theories RAT-ACU and INT-ACU.
Furthermore, it is implicit not as equational reasoning knowledge, but as inductive
knowledge about the initial algebras of INT-ACU and RAT-ACU, namely, Z and Q. That
is why standard rewrite techniques are insufficient to prove the CCPs that are generated
joinable: they are only ground joinable.

For example, the overlap of rules RAT-ACU-02 and RAT-ACU-12 generates the fol-
lowing conditional critical pair3:

gcd(x2, x1) > 1→∗ true⇒
x3 ∗ quot(x1, gcd(x2, x1))

quot(x2, gcd(x2, x1))
↓

x1 ∗ x3

x2

That any ground instance of the two fractions in the critical pair can be simplified to
the same fraction can be understood as a relatively simple arithmetic property, since
dividing two numbers by their gcd makes the quotients relative prime to each other.
However, both fractions may require further steps of simplification by rule RAT-ACU-02
to reach their canonical forms. The point is that all these arithmetic facts are inductive
knowledge about integer arithmetic, that is, about the initial algebra Z of the equational
specification INT-ACU. The good news is that INT-ACU is convergent4 and, a fortiori,
ground convergent. So “all we need” is to exploit the (ground version of the) Church-
Rosser Theorem for INT-ACU to prove this CCP ground joinable under the assumption
that its condition holds for a given ground substitution. But before we can do this, some
technical notions and results are needed.

6.2. Hierarchical Conditional Ground Confluence Techniques

Let us begin with the definition of conservative extension relative to a set of sorts.

Definition 6. Let (Σ0, E0] B0) ⊆ (Σ, E] B) and let S ′0 be a subset of sorts in Σ0. The

rewrite theory (Σ, B,
−→
E) is called a conservative extension of (Σ0, B0,

−→
E 0) relative to S ′0

iff:
1. ((→E,B |TΣ0 (X)); =B) = ((→E0,B0); =B0) and
2. TΣ(X)|S ′0 = TΣ0 (X)|S ′0 .

The following theorem states that if (Σ0, E0] B0) ⊆ (Σ, E] B) is a conservative
extension then the satisfiability of Σ0-conditions may be evaluated in (Σ0, E0] B0).

3The critical pair is named RAT-ACU5552 in the output generated by the CRC tool, see [? , Appendix
G].

4The output of the CRC tool of the checks of confluence and sort-decreasingness of the INT-ACU module
can be found in [? , Appendix H].

22

fmod RAT-ACU is
protecting INT-ACU .
sorts Rat NzRat PosRat NzPosRat .
subsort Int < Rat .
subsorts Nat NzPosRat < PosRat < Rat .
subsorts NzInt < NzRat < Rat .
subsorts NzNat < NzPosRat < NzRat PosRat .
op _/_ : NzRat NzRat -> NzRat [prec 31] . *** division
op _/_ : NzInt NzNat -> NzRat [ctor prec 31] .
op _/_ : NzNat NzNat -> NzPosRat [ctor prec 31] .
op -_ : Rat -> Rat .
op _+_ : Rat Rat -> Rat [assoc comm id: 0 prec 33] .
op _+_ : PosRat PosRat -> PosRat [assoc comm id: 0 prec 33] .
op _*_ : Rat Rat -> Rat [assoc comm prec 31] .
op _*_ : NzRat NzRat -> NzRat [assoc comm prec 31] .
op |_| : Rat -> PosRat . *** absolute value
op _~_ : Rat Rat -> Bool [comm] . *** equality predicate
op _>_ : Rat Rat -> Bool .

vars I’ J’ : NzInt .
vars R’ S’ : NzRat .
vars N’ M’ : NzNat .

eq [RAT-ACU-01]: 0 / N’ = 0 .
ceq [RAT-ACU-02]: J’ / M’ = quot(J’, gcd(J’, M’)) / quot(M’, gcd(J’, M’))

if gcd(J’, M’) > 1 = true . *** canonical form of fraction
eq [RAT-ACU-03]: R’ / 1 = R’ .
eq [RAT-ACU-04]: I’ / - N’ = - I’ / N’ .
eq [RAT-ACU-05]: I’ / (J’ / M’) = (I’ * M’) / J’ .
eq [RAT-ACU-06]: (I’ / N’) / J’ = I’ / (N’ * J’) .
eq [RAT-ACU-07]: (I’ / N’) / (J’ / M’) = (I’ * M’) / (N’ * J’) .
eq [RAT-ACU-08]: - (I’ / N’) = - I’ / N’ .
eq [RAT-ACU-09]: J’ + (I’ / N’) = ((J’ * N’) + I’) / N’ .
eq [RAT-ACU-10]: (I’ / N’) + (J’ / M’) = ((I’ * M’) + (J’ * N’)) / (N’ * M’) .
eq [RAT-ACU-11]: (I’ / N’) * 0 = 0 .
eq [RAT-ACU-12]: (I’ / N’) * J’ = (I’ * J’) / N’ .
eq [RAT-ACU-13]: (I’ / N’) * (J’ / M’) = (I’ * J’) / (N’ * M’) .
eq [RAT-ACU-14]: | I’ / N’ | = | I’ | / N’ .
eq [RAT-ACU-15]: 0 ~ R’ = false .
eq [RAT-ACU-16]: (I’ / N’) ~ J’ = I’ ~ (J’ * N’) .
eq [RAT-ACU-17]: (I’ / N’) ~ (J’ / M’) = (I’ * M’) ~ (J’ * N’) .
eq [RAT-ACU-18]: 0 > N’ / M’ = false .
eq [RAT-ACU-19]: 0 > - N’ / M’ = true .
eq [RAT-ACU-20]: N’ / M’ > 0 = true .
eq [RAT-ACU-21]: - N’ / M’ > 0 = false .
eq [RAT-ACU-22]: I’ > (J’ / M’) = (I’ * M’) > J’ .
eq [RAT-ACU-23]: (I’ / N’) > J’ = I’ > (J’ * N’) .
eq [RAT-ACU-24]: (I’ / N’) > (J’ / M’) = (I’ * M’) > (J’ * N’) .

endfm

Figure 4: RAT-ACU module specifying the rational numbers

23

Theorem 7. Let (Σ, B,
−→
E) be a conservative extension of the rewrite theory (Σ0, B0,

−→
E 0)

relative to the subset of sorts S ′0 of Σ0. If for each conditional rule

(l→ r if C) ∈
−→
E \
−→
E 0

where C is a Σ0-condition, and letting Y = vars(C), we have sorts(Y) ⊆ S ′0, then for
each substitution θ ∈ [Y −→ TΣ(X)]

(Σ, B,
−→
E) |= Cθ ⇔ (Σ0, B0,

−→
E0) |= Cθ.

Proof. First of all note that, by the conservativity assumption relative to S ′0, we have
[Y → TΣ(X)] = [Y → TΣ0 (X|S ′0). But then, for each u →∗ v in the condition C and
u, v ∈ TΣ0 (X), and θ ∈

[
Y −→ TΣ0 (X) |S ′0

]
, by the conservativity assumption and the

fact that (Σ, B,
−→
E) and (Σ0, B0,

−→
E 0) are always assumed to be strictly B-coherent we

also have

∃w (uθ →∗−→
E ,B

w =B vθ) ⇔ ∃w′ (uθ →∗−→
E0,B0

w′ =B0 vθ)

�

The following result provides a mechanism for checking whether an extension is
conservative.

Theorem 8. Let (Σ0, B0,
−→
E0) ⊆ (Σ, B,

−→
E) be an extension of rewrite theories, and S ′0 a

subset of the sorts S 0 in Σ0 such that
(a) ∀u, v ∈ TΣ0 (XS 0), u =B v⇔ u =B0 v, and
(b) TΣ(X) |S ′0= TΣ0 (XS 0) |S ′0 .

Furthermore, assume that for each l→ r if C in
−→
E \
−→
E 0, with Z = vars(l→ r if C) and

Z0 = vars(C), C is a Σ0-condition such that sorts(Z0) ⊆ S ′0. Then, if for each such rule,

and each substitution θ ∈ [Z −→ TΣ(X)] such that lθ ∈ TΣ0 (XS 0) and (Σ, B,
−→
E) |= Cθ

there is (l′ → r′ if C′) ∈ R0 with Z′ = vars(l′ → r′ if C′) and γ ∈
[
Z′ −→ TΣ0 (X |S 0)

]
such that lθ =B0 l′γ, rθ =B0 r′γ, and (Σ0, B0,

−→
E0) |= C′γ, then((

→−→
E ,B
|TΣ0 (XS 0)

)
; =B

)
=

(
→−→

E0,B0
; =B0

)
.

Proof. We of course have→−→
E0,B0

⊆ →−→
E ,B
|TΣ0 (X), so we only need to show that for any

u, v,w ∈ TΣ0 (X), u→R,B v =B w implies u→R0,B0 v′ =B0 w. But u→R,B v means that
there is a rule l→ r if C ∈ R, with Z = vars(l→ r if C), a position p, and a substitution
θ ∈ [Z −→ TΣ(X)] such that u |p=B lθ ∈ TΣ0 (X |S 0), v ≡ u[rθ]p, and (Σ, B,

−→
E) |= Cθ. By

the Theorem’s hypothesis we have a rule l′ → r′ if C′ ∈ R0, with Z′ = vars(l′ → r′ if C′),
and substitution γ ∈

[
Z′ −→ TΣ0 (X |S 0)

]
such that u |p=B lθ =B0 l′γ, rθ =B0 r′γ, and

(Σ0, B0,
−→
E0) |= C′γ. But this then means that u→R0,B0 v′, where v′ ≡ u[r′γ]p =B0 v =B w.

But, by hypothesis, u, v ∈ TΣ0 (X |S 0), and therefore, by (a) we have v =B0 w, proving
v′ =B w, as desired. �

Finally, Theorem 9 provides a way to handle CCPs whose conditions belong to a
sub-specification that is conservatively extended.

24

Theorem 9. Let R0 = (Σ0, B0,
−→
E0) ⊆ (Σ, B,

−→
E) = R be a conservative extension relative

to a set S ′0 of sorts of Σ0 such that B and B0 ⊆ B are linear and regular axioms having
unification algorithms, R0 is ground convergent, and R is ground sort-decreasing, and
operationally terminating.5 Let

D ⇒ u ↓ v (†)

be a conditional critical pair in R with D a Σ0-condition whose variables have all sorts
in S ′0. Let D= be the conjunction of equalities associated to the conjunction of rewrite
conditions D. Then,

(1) If TΣ0/E0∪B0 |= ¬(∃D=), where ∃D= is the existential closure of D, then the criti-
cal pair (†) can be discarded.

(2) Let Y = vars(D ⇒ u ↓ v), and let p1, . . . , pn, resp. q1, . . . , qm, be disjoint po-
sitions in u, resp. v, such that ls(u|pi) ∈ S ′0, 1 ≤ i ≤ n, resp. ls(v|q j) ∈ S ′0,
1 ≤ j ≤ m. Let then z1, . . . , zn, resp. zn+1, . . . , zn+m be fresh new variables of such
sorts that can be used as abstraction variables that abstract the terms u|pi , resp.
v|q j . Then, let

A ≡ z1 = u|p1 ∧ . . . ∧ zn = u|pn ∧ zn+1 = v|q1 ∧ . . . ∧ zn+m = v|qm

be such a collection of abstraction equations, and
Aaux ≡ zn+m+1 = w1 ∧ . . . ∧ zn+m+m′ = wm′

where wl ∈ TΣ0 (Y)|S ′0 , 1 ≤ l ≤ m′, and Z = {z1, . . . , zn+m+m′ } are variables of the
corresponding least sorts, so that they are all contained in S ′0. Assume that

(i)

TΣ0/E0∪B0 |= ∀(Y ∪ Z)
((

D= ∧ A ∧ Aaux
)
⇒

∨
k∈K

Gk

)
where, for each k ∈ K, Gk is a set of equations such that if t = t′ ∈ Gk, then
t, t′ ∈ TΣ0 (Z), and either t′ ∈ Z, or t′ ∈ TΣ0 and t′ is in

−→
E0, B0-normal form.

(ii) For each k ∈ K,

(Σ(Z), B,
−→
E ∪
−→
Gk) |= u[z1, . . . , zn]p1...pn ↓ v[zn+1, . . . , zn+m]q1...qm

where Σ(Z) is the signature obtained by adding the variables Z as fresh
new constants, and

−→
Gk are the rules t → t′ for each t = t′ ∈ Gk.

Then the conditional critical pair (†) is ground joinable.
(3) If each non-joinable critical pair inR can either be discarded using (1), or shown

ground joinable using (2), then R is ground convergent.

Before proving Theorem 9, let us illustrate in detail the use of its case (2) with an
example.

Example 2. Let R0 = RINT-ACU be the rewrite theory associated to INT-ACU, and R =

RRAT-ACU the rewrite theory associated to RAT-ACU,6 S ′0 = {Int,NzInt,Nat,NzNat}, and

5And, as all other theories, always assumed to be strongly deterministic and strictly B-coherent.
6The critical pair in the example is labelled RAT-ACU5552 in the output given by the CRC tool. It

comes from the overlap of equations RAT-ACU-02 and RAT-ACU-12. The INT-ACU and RAT-ACU
specifications, together with the rest of the modules in the hierarchy, can be found in Appendix E.

25

consider again the conditional critical pair

gcd(x2, x1) > 1→∗ true⇒ x3 ∗
quot(x1, gcd(x2, x1))

quot(x2, gcd(x2, x1))
↓

x1 ∗ x3

x2

where x1 and x3 have sort NzInt, and x2 has sort NzNat. The lefthand side term positions
are 1, 2.1 and 2.2, and the righthand side term positions are 1 and 2. That is, all Σ0-
subterms will be abstracted out. Then,

A ≡ { z1 = x3, (01)
z2 = quot(x1, gcd(x2, x1)), (02)
z3 = quot(x2, gcd(x2, x1)), (03)
z4 = x1 ∗ x3, (04)
z5 = x2 } (05)

Aaux ≡ { z6 = x3 ∗ quot(x1, gcd(x2, x1)), (06)
z7 = quot(x1 ∗ x3, gcd(x2, x1 ∗ x3)), (07)
z8 = quot(x2, gcd(x2, x1 ∗ x3)), (08)
z9 = gcd(x3 ∗ quot(x1, gcd(x2, x1)), quot(x2, gcd(x2, x1))) } (09)

G0 ≡ { gcd(z4, z5) > 1 = true } (10)
G1 ≡ G0 ∪ { gcd(z6, z3) = z9, (11)

z9 > 1 = true, (12)
quot(z6, z9) = z7, (13)
quot(z3, z9) = z8 } (14)

G2 ≡ G0 ∪ { z6 = z7, (15)
z3 = z8 } (16)

It is then easy to see that in both (Σ(Z), B,
−→
E ∪

−→
G1) and (Σ(Z), B,

−→
E ∪

−→
G2) we have

z1 ∗ (z2 / z3)→∗ z7 / z8 and z4 / z5 →
∗ z7 / z8 and therefore z1 ∗ (z2 / z3) ↓ z4 / z5.

For
−→
G0, since by (10) the condition gcd(z4, z5) > 1 →∗ true is satisfied, we can

simplify z4 / z5 with the conditional rule RAT-ACU-02 and further simplify it as follows:
z4

z5
−→

quot(z4, gcd(z5, z4))

quot(z5, gcd(z5, z4))

(07)
−→
(08)

z7

z8

Moreover, z1 ∗ (z2 / z3) can also in both cases be simplified using rule RAT-ACU-12 as

z1 ∗
z2

z3
−→

z1 ∗ z2

z3

(06)
−→

z6

z3

Notice that since for x of sort NzInt and y of sort NzNat we have the inductive theorems
TΣ0/E0∪B0 |= quot(x, gcd(x, y)) : NzInt

TΣ0/E0∪B0 |= quot(y, gcd(x, y)) : NzNat

we have z2 : NzInt and z3 : NzNat.
The proof for

−→
G1 is easy to complete, since the condition gcd(z6, z3) > 1 →∗ true is

satisfied by the rewrite sequence

gcd(z6, z3) > 1
(09)
−→ z9 > 1

(12)
−→ true

and therefore we can also simplify z6 / z3 with the conditional rule RAT-ACU-02 and
further simplify it as follows:

z6

z3
−→

quot(z6, gcd(z6, z3))

quot(z3, gcd(z6, z3))

(09)
−→
(09)

quot(z6, z9)

quot(z3, z9)

(13)
−→
(14)

z7

z8

as desired. The proof for
−→
G2 is trivially completed using (15) and (16).

26

Letting D ≡ gcd(x2, x1) > 1→∗ true we need to show that
TΣ0/E0∪B0 |= ∀(Y ∪ Z)

(
D= ∧ A ∧ Aaux ⇒ G1 ∨G2

)
But to prove this it is enough to show

TΣ0/E0∪B0 |= ∀(Y ∪ Z)
(
D= ∧ A ∧ Aaux ⇒ G

)
where

G ≡ { gcd(z6, z3) = z9,
gcd(z4, z5) > 1 = true,
quot(z6, z9) = z7,
quot(z3, z9) = z8 }.

This is so because

TΣ0/E0∪B0 |= z9 = 1 ∨ z9 > 1 = true

is an inductive theorem for z9, of sort NzNat, provable by variant satisfiability, so that
TΣ0/E0∪B0 |= G ⇔

((
G ∧ z9 = 1

)
∨

(
G ∧ z9 > 1 = true

))
⇒ G1 ∨G2.

Let us show that G holds assuming D=, A, and Aaux do. Interpret x1, x2, x3 as
a1, a2, a3 ∈ TΣ0/E0∪B0 having sorts NzInt, NzNat, and NzInt, respectively. First of all,
note that there is only one possible interpretation for the variables z1 . . . z9 as constants
b1 . . . b9 making the hypothesis D= ∧A∧Aaux true. Since R0 is convergent, we can take
as TΣ0/E0∪B0 the canonical term algebra C

Σ0/
−→
E0,B0

, and can assume that a1, a2, a3 have
the form a1 = [t1!−→

E0,B0
]B0 , a2 = [t2!−→

E0,B0
]B0 , and a3 = [t3!−→

E0,B0
]B0 , where t!−→

E0,B0
denotes

the
−→
E0, B0-canonical form of term t. Therefore, for the hypothesis to hold we must, for

example, have z1 interpreted as
b1 = [t3 !−→

E0,B0
]B0 ,

z2 as

b2 = [quot(t1, gcd(t2, t1)) !−→
E0,B0

]B0

and so on for all other variables z3 . . . z9, i.e., we just substitute the xi for the ti in A
and Aaux and obtain the B0-equivalence class of each righthand side’s

−→
E0, B0-normal

form. We just need to show that under such an interpretation the corresponding in-
terpretation of G holds. By abuse of language, let the arithmetic expressions for the
bi denote the corresponding (B0-equivalence classes of)

−→
E0, B0-normal forms. From

A and Aaux, gcd(b6, b2) = b9 trivially holds in C
Σ0/
−→
E0,B0

, and gcd(a1, a2) > 1 = true im-
plies gcd(a1 ∗ a3, a2) > 1 = true. Then, we just need to show that quot(b6, b9) = b7 and
quot(b2, b9) = b8 do too using some inductive properties of the initial algebraTΣ0/E0∪B0 ,
namely, Z.

Let us abbreviate the predicate ∃k m = n ∗ k as n | m, which can be read as n divides
to m. If n | m and n | m′ we sometimes write n | m,m′. Since gcd(a2, a1) | gcd(a2, a1 ∗ a3),
then gcd(a2, a1 ∗ a3) = c ∗ gcd(a2, a1) for some c. But then, since gcd(a2, a1) | a2, a1,
and gcd(a2, a1 ∗ a3) | a2, a1 ∗ a3, from A and Aaux we get:

b6 ∗ gcd(a2, a1) = a1 ∗ a3 = b7 ∗ gcd(a2, a1 ∗ a3) = b7 ∗ c ∗ gcd(a2, a1) (a)
b3 ∗ gcd(a2, a1) = a2 = b8 ∗ gcd(a2, a1 ∗ a3) = b8 ∗ c ∗ gcd(a2, a1) (b)

27

And since for x, y, z of sort NzInt we have the inductive theorem
TΣ0/E0∪B0 |= x ∗ z = y ∗ z⇒ x ∗ y

from the above (a) and (b) we get b6 = b7 ∗ c and b3 = b8 ∗ c. But since gcd(b7, b8) = 1
this means that

b9 = gcd(b6, b3) = c

and therefore that quot(b6, b9) = b7 and quot(b3, b9) = b8, as desired. We just need to
show that

TΣ0/E0∪B0 |=
(
G ∧ z9 > 1 = true

)
⇒ G1

TΣ0/E0∪B0 |=
(
G ∧ z9 = 1

)
⇒ G2

But this is easy to check and is left to the reader.

Before proving Theorem 9 we need an auxiliary lemma.

Lemma 1. LetR andR0 be rewrite theories as in Theorem 9, and let the CCP variables
Y, the abstraction variables Z, and the equations Gk, k ∈ K, be as in (2) in Theorem 9.
Then, for any t, t′ ∈ TΣ(Z)(Y), and each

−→
E0, B0-normalized substitution δ ∈

[
Z −→ TΣ0

]
,

δ = δ!−→
E0,B0

, such that TΣ0/E0∪B0 |= ∧Gkδ, if tδ =B t′ and t →∗−→
E∪
−→
Gk ,B

w, then there exists

a rewrite sequence t′ →∗−→
E ,B

w′ such that wδ =B w′.

Proof. By induction on the length n of the rewrite sequence t →∗−→
E∪
−→
Gk ,B

w. For n = 0 the

result follows trivially. Assume the result true for rewrite sequences of length smaller
or equal than n, and let t →∗−→

E∪
−→
Gk ,B

t1 →−→E∪−→Gk ,B
w be a rewrite sequence of length n + 1.

By the induction hypothesis we then have t′ →∗−→
E ,B

t′1 such that t1δ =B t′1. Suppose that

the last step uses a rule (l→ r if C) ∈
−→
E . Although the rewrite t1 →−→E ,B w is performed

in the theory (Σ(Z), B,
−→
E), where the variables Z are constants, the exact same rewrite

step and proof of the condition can be performed in (Σ, B,
−→
E) and therefore we have also

a rewrite t1δ→−→E ,B wδ and, by the strict B-coherence of (Σ, B,
−→
E), a rewrite t′1 →−→E ,B w′

such that wδ =B w′, as desired. Suppose instead that we have a rewrite step t1 →−→Gk ,B
w

with a rule (l → r) ∈
−→
Gk. Then, since r is either a variable in Z or a Σ0-ground term

in
−→
E0, B0-normal form, TΣ0/E0∪B0 |= Gkδ, and R0 is ground convergent, by the ground

Church-Rosser Theorem we must have lδ →∗−→
E0,B0

lδ!−→
E0,B0

=B0 rδ. Therefore, there is a

rewrite sequence t1δ →∗−→
E0,B0

w1 with w1 =B wδ and, by strict B-coherence of R, also a

rewrite sequence t′1 →
∗
−→
E0,B0

w′ such that w′ =B w1 =B wδ, as desired. This finishes the

proof of the lemma. �

Let us now prove Theorem 9.

Proof. The proof of (1) is easy, because if R0 |= Dθ for some ground substitution θ, we
obviously have TΣ0/E0∪B0 |= D=θ. Therefore, TΣ0/E0∪B0 |= ¬(∃D=) means that there is
no ground substitution θ such that R0 |= Dθ, and therefore the conditional critical pair
can be discarded.

28

Let us now prove (2). That is, assuming that (2)-(i) and (2)-(ii) hold, we need to
prove that the critical pair (†) is ground confluent. Let θ ∈ [Y −→ TΣ] be any ground
substitution such that R |= Dθ. We have to show that uθ ↓−→

E ,B
vθ holds. By the

assumptions on D and R0 ⊆ R being a conservative extension this means that R0 |= Dθ,
which obviously implies TΣ0/E0∪B0 |= D=θ. But, since the unique interpretation of the
variables Y in TΣ0/E0∪B0 provided by θ extends in a unique way up to B0-equivalence
to a unique interpretation of the variables Z making A ∧ Aaux true in TΣ0/E0∪B0 , we can
then choose a

−→
E0, B0-normalized substitution δ ∈

[
Z −→ TΣ0

]
, i.e., δ = δ!−→

E0,B
, such that

TΣ0/E0∪B0 |=
(
A ∧ Aaux

)
(θ] δ). Note that, by the Ground Church-Rosser Theorem for

R0, this means that for each z = t in A ∪ Aaux we must have tθ →∗−→
E0,B0

tθ!−→
E0,B

=B0 δ(z).

But then, by (i) we must have TΣ0/E0∪B0 |=
∨

k∈K ∧Gkδ, and therefore there is a k ∈ K
such that TΣ0/E0∪B0 |= ∧Gkδ holds. But by (2)-(ii) we have rewrite sequences

u[z6, . . . , zn]p1...pn

∗−→
E∪
−→
Gk ,B ((

v[zn+1, . . . , zn+m]q1...qm

∗ −→
E∪
−→
Gk ,Bvv

w1 =B w2

and therefore, since u[z6, . . . , zn]p1...pn (θ]δ) = uθ[δ(z6), . . . , δ(zn)]p1...pn , and v[zn+1, . . . , zn+m]q1...qm (θ]
δ) = vθ[δ(zn+1), . . . , δ(zn+m)]q1...qm , rewrite sequences
uθ[δ(z6), . . . , δ(zn)]p1...pn

∗−→
E∪
−→
Gk ,B))

vθ[δ(zn+1), . . . , δ(zn+m)]q1...qm

∗ −→
E∪
−→
Gk ,Btt

w1(θ] δ) =B w2(θ] δ)

But note that for each zi, 1 ≤ i ≤ n, zn+ j, 1 ≤ j ≤ n, since δ is
−→
E0, B0-normalized, we

have

uθ |pi→
∗
−→
E0,B0

uθ |pi !−→
E0,B0

=B0 δ(zi)

vθ |q j→
∗
−→
E0,B0

vθ |q j !−→
E0,B

=B0 δ(zn+ j)

and therefore

uθ →∗−→
E0,B0

u′ =B0 uθ[δ(z6), . . . , δ(zn)]p1...pn

vθ →∗−→
E0,B0

v′ =B0 vθ[δ(zn+1), . . . , δ(zn+m)]q1...qm

We will be done if we show that there are rewrite sequences u′ →∗−→
E ,B

w′1 and v′ →∗−→
E ,B

w′2
such that w′1 =B w1(θ] δ) and w′2 =B w2(θ] δ). But note that

u′ =
(
u[(u|p1θ)!−→E0,B0

, . . . , (u|pnθ)!−→E0,B0
]p1...pn

)
θ =B0

(
u[z6, . . . , zn]p1...pnδ

)
θ,

v′ =
(
v[(v|q1θ)!−→E0,B0

, . . . , (v|qmθ)!−→E0,B0
]q1...qm

)
θ =B0

(
v[zn+1, . . . , zn+m]q1...qmδ

)
θ,

w1(θ] δ) = (w1δ)θ, and

29

w2(θ] δ) = (w2δ)θ.

Therefore, by Lemma 1, the ground instance of the CCP satisfying its condition can be
joined, as desired. �

6.3. Confluence of the RAT-ACU module

If we check the Church-Rosser property of the RAT-ACU module (Appendix E), we
get several proof obligations, specifically, 36 conditional critical pairs for confluence
and 33 conditional memberships for sort decreasingness. The result given by the tool
can be found in [? , Appendix G]. Proofs for the membership assertions can be found
in [? , Appendix I].

In addition to the check for RAT-ACU, [? , Appendix G] presents the output of
checking each of the modules in the hierarchy. Interestingly, modules BOOL-FVP, NAT-
FVP, NAT-ACU, INT-FVP, and INT-ACU are proved locally confluent and sort decreasing.
Since they are also terminating, they are convergent, and therefore, we can apply the
hierarchical techniques developed in the previous sections for proving the conditional
critical pairs for RAT-ACU.

Given the specifications in Appendix E, let R0 = RINT-ACU be the rewrite theory
associated to INT-ACU, and R = RRAT-ACU the rewrite theory associated to RAT-ACU. We
provide in this section proofs for the joinability or unsatisfiability of a representative
selection of the critical pairs output by the CRC tool on input RAT-ACU. These critical
pairs were chosen to show different situations found when completing the proofs and
most of the techniques in the overall proofs are present in these examples. The detail
of all proofs can be found in [? , Appendix H].

Given variables I′, J′ and K′ of sort NzInt and N′ of sort NzNat we have the follow-
ing inductive lemmas:

TΣ0/E0∪B0 |= I′ + - N′ = - (- I′ + N′) (L01)
TΣ0/E0∪B0 |= quot(I′, gcd(I′, N′)) : NzInt (L02)
TΣ0/E0∪B0 |= gcd(- I′, J′) = gcd(I′, J′) (L03)
TΣ0/E0∪B0 |= gcd(I′ + J′ ∗ N′, N′) = gcd(I′, N′) (L04)
TΣ0/E0∪B0 |= I′ = quot(I′, gcd(I′, J′)) ∗ gcd(I′, J′) (L05)
TΣ0/E0∪B0 |= I′ ∗ K′ = J′ ∗ K′ ⇔ I′ = J′ (L06)
TΣ0/E0∪B0 |= quot(N′, gcd(I′, N′)) : NzNat (L07)

In what follows, we let S ′0 = {Int,NzInt,Nat,NzNat}.

6.3.1. Conditional critical pair RAT-ACU1000
The critical pair RAT-ACU1000 is the following one:

gcd(x2, x1) > 1→∗ true⇒
x2 + x1 ∗ x3

x3
↓ x1 +

quot(x2, gcd(x2, x3))

quot(x3, gcd(x2, x3))
where x1 and x3 have sort NzNat, and x2 has sort NzInt. It comes from the overlap of
equations INT-FVP-02 and RAT-ACU-02.

Let us consider the following sets of axioms:

A ≡ { z1 = x2 + x1 ∗ x3, (1000-01)
z2 = x3, (1000-02)

30

z3 = x1, (1000-03)
z4 = quot(x2, gcd(x2, x3)), (1000-04)
z5 = quot(x3, gcd(x2, x3)) }, (1000-05)

Aaux ≡ { z6 = 0, (1000-06)
z7 = x1 ∗ quot(x3, gcd(x2, x3)) + quot(x2, gcd(x2, x3)), (1000-07)
z8 = gcd(x2 + x1 ∗ x3, x3), (1000-08)
z9 = quot(x2 + x1 ∗ x3, gcd(x2 + x1 ∗ x3, x3)), (1000-09)
z10 = quot(x3, gcd(x2 + x1 ∗ x3, x3)) (1000-10)
z11 = gcd(x1 ∗ quot(x3, gcd(x2, x3)) + quot(x2, gcd(x2, x3)), quot(x3, gcd(x2, x3)))

(1000-11)
z12 = quot(x1 ∗ quot(x3, gcd(x2, x3)) + quot(x2, gcd(x2, x3)), gcd(x1 ∗ quot(x3, gcd(x2, x3)) + quot(x2, gcd(x2, x3)), quot(x3, gcd(x2, x3))))

(1000-12)
z13 = quot(quot(x3, gcd(x2, x3)), gcd(x1 ∗ quot(x3, gcd(x2, x3)) + quot(x2, gcd(x2, x3)), quot(x3, gcd(x2, x3))))

(1000-13)
G1

aux ≡ { z3 ∗ z5 + z4 = z7 } (1000-14)
G1 ≡ G1

aux∪

{ z1 = 0, (1000-15)
z7 = 0 } (1000-16)

G2
aux ≡ G1

aux∪

{ z1 , 0, (1000-17)
z9 , 0 } (1000-18)

G3
aux ≡ G2

aux∪

{ gcd(z1, z2) = z8, (1000-19)
z8 > 1 = true, (1000-20)
quot(z1, z8) = z9, (1000-21)
quot(z2, z8) = z10 } (1000-22)

G4
aux ≡ G2

aux∪

{ gcd(z7, z5) = z11, (1000-23)
z11 > 1 = true, (1000-24)
quot(z7, z11) = z12, (1000-25)
quot(z5, z11) = z13 } (1000-26)

G2 ≡ G3
aux∪

{ z9 = z7, (1000-27)
z10 = z5 } (1000-28)

G3 ≡ G4
aux∪

{ z12 = z1, (1000-29)
z13 = z2 } (1000-30)

G4 ≡ { z9 = z12, (1000-31)
z10 = z13 } (1000-32)

It is then easy to see that in all (Σ(Z), B,
−→
E∪
−→
Gi), i = 1 · · · 4, we have z1 / z2 ↓ z3 + z4 / z5.

In
−−−→
G1

aux, by (1000-03), (1000-04), and (1000-05), we can simplify z3 + z4 / z5 with
the rule RAT-ACU-09 as follows:

z3 +
z4

z5

RAT-ACU-09
−→

z3 ∗ z5 + z4

z5

(1000-07)
−→

z7

z5

Notice that by Lemmas (L02) and (L07) we have z4 : NzInt and z5 : NzNat.
We can complete the proof for

−→
G1 with the following simplification steps leading

31

both z1 / z2 and z7 / z5 to z6:
z1

z2

(1000-15)
−→

0

z2

(1000-06)
−→

z6

z2

RAT-ACU-01
−→ z6

RAT-ACU-01
←−

z6

z5

(1000-06)
←−

0

z5

(1000-16)
←−

z7

z5

In
−−−→
G3

aux, by (1000-19) and (1000-20), the condition gcd(z1, z2) > 1 →∗ true is sat-
isfied, and therefore we can simplify z1 / z2 with the conditional rule RAT-ACU-02 and
further simplify it as follows:

z1

z2

RAT-ACU-02
−→

quot(z1, gcd(z1, z2))

quot(z2, gcd(z1, z2))

(1000-08)
−→

(1000-08)

quot(z1, z8)

quot(z2, z8)

(1000-21)
−→

(1000-22)

z9

z10

In
−−−→
G4

aux, by (1000-23) and (1000-24), the condition gcd(z7, z5) > 1 →∗ true is satisfied,
and therefore we can simplify z7 / z5 with the conditional rule RAT-ACU-02 and further
simplify it as follows:

z7

z5

RAT-ACU-02
−→

quot(z7, gcd(z5, z7))

quot(z5, gcd(z5, z7))

(1000-11)
−→

(1000-11)

quot(z7, z11)

quot(z5, z11)

(1000-25)
−→

(1000-26)

z12

z13

The proof is then trivially completed for
−→
Gi, i = 2 . . . 4.

Letting D ≡ gcd(x2, x3) > 1→∗ true we need to show that
TΣ0/E0∪B0 |= ∀(Y ∪ Z)

(
D= ∧ A ∧ Aaux ⇒ G1 ∨G2 ∨G3 ∨G4

)
But to prove this it is enough to show

TΣ0/E0∪B0 |= ∀(Y ∪ Z)
(
D= ∧ A ∧ Aaux ⇒ G

)
where

G ≡ { z3 ∗ z5 + z4 = z7,
gcd(z1, z2) = z8,
gcd(z7, z5) = z11,
quot(z1, z8) = quot(z7, z11),
quot(z2, z8) = quot(z5, z11) }

This is so because
TΣ0/E0∪B0 |= I = 0 ∨ I , 0

TΣ0/E0∪B0 |= N′ = 1 ∨ N′ > 1 = true

are inductive theorems for N′ of sort NzNat and I of sort Int, provable by variant satis-
fiability, so that

TΣ0/E0∪B0 |= G ⇔ G ∧
(
(z1 = 0 ∨ z1 , 0)
∧ (z8 = 1 ∨ z8 > 1 = true)
∧ (z11 = 1 ∨ z11 > 1 = true)

)
⇒ G1 ∨G2 ∨G3 ∨G4.

Let us show that G holds assuming D=, A, and Aaux. Interpret x1 . . . x3 as a1 . . . a3 ∈

TΣ0/E0∪B0 having sorts NzInt, NzInt, and NzNat, respectively. Let constants b1 . . . b10 be
the unique interpretation for the variables z1 . . . z10 making the hypothesis D=∧A∧Aaux

true. Let TΣ0/E0∪B0 be the canonical term algebra C
Σ0/
−→
E0,B0

, and a1 . . . a3 have the form

ai = [ti!−→E0,B0
]B0 , where ti!−→E0,B0

denotes the
−→
E0, B0-canonical form of term ti. Let us

interpret variables zi as values bi by substituting the xi for the ti in A and Aaux and
obtain the B0-equivalence class of each righthand side’s

−→
E0, B0-normal form. Let us

now show under such interpretation that the corresponding interpretation of G holds.
First, notice that b1 = 0 ⇔ b7 = 0 is a consequence of the following sequence of

32

equivalences:
z1 = 0

⇔ x2 + x1 ∗ x3 = 0
⇔ z4 ∗ gcd(x2, x3) + x1 ∗ z5 ∗ gcd(x2, x3) = 0
⇔ (z4 + x1 ∗ z5) ∗ gcd(x2, x3) = 0
⇔ z4 + x1 ∗ z5 = 0
⇔ z7 = 0

b3 ∗ b5 + b4 = b7, gcd(b1, b2) = b8, and gcd(b7, b5) = b11 trivially hold. From A and
Aaux, given Lemmas (L04) and (L05), we have:
z9 ∗ gcd(x2, x3) = quot(z1, z8) ∗ gcd(x2, x3)

= quot(x2 + x1 ∗ x3, gcd(x2 + x1 ∗ x3, x3)) ∗ gcd(x2, x3)
= quot(x2 + x1 ∗ x3, gcd(x2 + x1 ∗ x3, x3)) ∗ gcd(x2 + x1 ∗ x3, x3)
= x2 + x1 ∗ x3
= quot(x2, gcd(x2, x3)) ∗ gcd(x2, x3) + x1 ∗ quot(x3, gcd(x2, x3)) ∗ gcd(x2, x3)
= (quot(x2, gcd(x2, x3)) + x1 ∗ quot(x3, gcd(x2, x3))) ∗ gcd(x2, x3)
= (z4 + z3 ∗ z5) ∗ gcd(x2, x3)
= z7 ∗ gcd(x2, x3)
= quot(z7, z11) ∗ z11 ∗ gcd(x2, x3)
= z12 ∗ gcd(x2, x3)

z10 ∗ gcd(x2, x3) = quot(z2, z8) ∗ gcd(x2, x3)
= quot(x3, gcd(x2 + x1 ∗ x3, x3)) ∗ gcd(x2, x3)
= quot(x3, gcd(x2, x3)) ∗ gcd(x2, x3)
= x3
= quot(x3, gcd(x2, x3)) ∗ gcd(x2, x3)
= z5 ∗ gcd(x2, x3)
= quot(z5, z11) ∗ z11 ∗ gcd(x2, x3)
= z13 ∗ gcd(x2, x3)

From the above, by Lemma (L06), we get b9 = b12 and b10 = b13, as desired.

6.3.2. Conditional critical pair RAT-ACU1530
The critical pair RAT-ACU1530 is the following one:

gcd(1, x1) > 1→∗ true⇒ x1 + x2 ↓ x2 +
quot(x1, gcd(1, x1))

quot(1, gcd(1, x1))
where x1 have sort NzInt, and x2 has sort [Rat]. It comes from the overlap of equations
RAT-ACU-03 and RAT-ACU-02.

Our first observation is that the condition of the critical pair is a Σ0-condition whose
variables have all sorts in S ′0. Since such condition is unsatisfiable, the critical pair may
be discarded.

6.3.3. Conditional critical pair RAT-ACU3326
The critical pair RAT-ACU3326 is the following one:

gcd(x2, x1) > 1→∗ true⇒
x1 + - x2

x2
↓ - 1 +

quot(x1, gcd(x1, x2))

quot(x2, gcd(x1, x2))
where x1 has sort NzInt, and x2 has sort NzNat. It comes from the overlap of equations
INT-FVP-05 and RAT-ACU-02.

Let us consider the following sets of axioms:
A ≡ { z1 = x1 + - x2, (3326-01)

33

z2 = x2, (3326-02)
z3 = - 1, (3326-03)
z4 = quot(x1, gcd(x1, x2)), (3326-04)
z5 = quot(x2, gcd(x1, x2)) } (3326-05)

Aaux ≡ { z6 = gcd(x1 + - x2, x2), (3326-06)
z7 = quot(x1 + - x2, gcd(x1 + - x2, x2)), (3326-07)
z8 = quot(x2, gcd(x1 + - x2, x2)), (3326-08)
z9 = quot(x1 + - x2, gcd(- x1 + x2, x2)), (3326-09)
z10 = quot(x2, gcd(- x1 + x2, x2)), (3326-10)
z11 = quot(x1 + - x2, gcd(- x1, x2)), (3326-11)
z12 = quot(x2, gcd(- x1, x2)), (3326-12)
z13 = - 1 ∗ quot(x2, gcd(x1, x2)) + quot(x1, gcd(x1, x2)), (3326-13)
z14 = - quot(x2, gcd(x1, x2)) + quot(x1, gcd(x1, x2)), (3326-14)
z15 = quot(- x2, gcd(x1, x2)) + quot(x1, gcd(x1, x2)), (3326-15)
z16 = quot(- x2 + x1, gcd(x1, x2)) } (3326-16)

G ≡ { z6 > 1 = true, (3326-17)
z7 = z9, (3326-18)
z8 = z10, (3326-19)
z9 = z11, (3326-20)
z10 = z12, (3326-21)
z11 = z16, (3326-22)
z12 = z5, (3326-23)
z3 ∗ z5 + z4 = z13 (3326-24)
z13 = z14, (3326-25)
z14 = z15, (3326-26)
z15 = z16 } (3326-27)

It is then easy to see that in (Σ(Z), B,
−→
E∪
−→
G) we have z1 / z2 →

∗ z16 / z5 and z3 + z4 / z5 →
∗

z16 / z5 and therefore z1 / z2 ↓ z3 + z4 / z5.
Since by (3326-06) and (3326-17) the condition gcd(z1, z2) > 1→∗ true is satisfied,

we can simplify z1 / z2 with the conditional rule RAT-ACU-02 and further simplify it as
follows:

z1

z2
−→

quot(z1, gcd(z1, z2))

quot(z2, gcd(z1, z2))

(3326-07)
−→

(3326-08)

z7

z8

(3326-18)
−→

(3326-19)

z9

z10

(3326-20)
−→

(3326-21)

z11

z12

(3326-22)
−→

(3326-23)

z16

z5

z3 + z4 / z5 can also be simplified using rule RAT-ACU-09 and further simplify it as

z3 +
z4

z5
−→

z3 ∗ z5 + z4

z5

(3326-24)
−→

z13

z5

(3326-25)
−→

z14

z5

(3326-26)
−→

z15

z5

(3326-27)
−→

z16

z5

Notice that by Lemmas (L02) and (L07) we have z4 : NzInt and z5 : NzNat.
Let us show that G holds assuming D=, A, and Aaux do. Interpret x1, x2 as a1, a2 ∈

TΣ0/E0∪B0 having sorts NzInt and NzNat, respectively. Let constants b1 . . . b16 be the
unique interpretation for the variables z1 . . . z16 making the hypothesis D= ∧ A ∧ Aaux

true. Let TΣ0/E0∪B0 be the canonical term algebra C
Σ0/
−→
E0,B0

, and a1, a2 have the form

ai = [ti!−→E0,B0
]B0 , where ti!−→E0,B0

denotes the
−→
E0, B0-canonical form of term ti. Let us

interpret variables zi as values bi by substituting the xi for the ti in A and Aaux and
obtain the B0-equivalence class of each righthand side’s

−→
E0, B0-normal form. Let us

now show under such interpretation that the corresponding interpretation of G holds.

34

We have the following rewrite sequence

gcd(x1, x2) > 1 = true
(L03)
−→ gcd(- x1, x2) > 1 = true
(L04)
−→ gcd(- x1 + x2, x2) > 1 = true
(L01)
−→ gcd(- (- x1 + x2), x2) > 1 = true
(L03)
−→ gcd(x1 + - x2, x2) > 1 = true

and therefore b6 > 1. (3326-18). . . (3326-23) and (3326-25). . . (3326-27) are also con-
sequences of Lemmas (L01), (L03), and (L04). Finally, b3 ∗ b5 + b4 = b13 trivially
holds.

6.3.4. Conditional critical pair RAT-ACU5555
The critical pair RAT-ACU5555 is:

gcd(x2, x1) > 1→∗ true⇒ x3 ∗ x4 ∗
quot(x1, gcd(x2, x1))

quot(x2, gcd(x2, x1))
↓ x4 ∗

x1 ∗ x3

x2

where x1 and x3 have sort NzInt, x2 has sort NzNat, and x4 has sort [Rat]. It comes from
the overlap of equations RAT-ACU-12 and RAT-ACU-02.

Although the inference rules for proving joinability in Section 4 were introduced
for the non-conditional case, the context Ctx rule can be lifted to a restricted form in a
conditional setting that is useful for the example at hand.

R
 D⇒ (∀X) t ↓ u

R
 D⇒ (∀X) C[t] ↓ C[u]
SC-Ctx

A proof of the joinability of the critical pair may be provided using the same tech-
niques as for the previous critical pairs of the RAT-ACU specification. However, this
is a case of joinability under a context; the conditional critical pair RAT-ACU5552 was
proven joinable in Example 2.

gcd(x2, x1) > 1→∗ true⇒ x3 ∗
quot(x1, gcd(x2, x1))

quot(x2, gcd(x2, x1))
↓

x1 ∗ x3

x2

7. Related Work and Conclusion

In [3], A. Bouhoula proposes an inference system for simultaneously checking the
sufficient completeness and ground confluence of constructor-based equational speci-
fications. His approach computes a pattern tree for every defined symbol and identifies
a set of proof obligations whose inductive validity has to be checked: if they all are
inductive theorems, then the specification is both sufficiently complete and ground con-
fluent; otherwise, it outputs a counterexample. The main difference between the two
approaches is that the one presented in this paper can handle both conditional speci-
fications and reasoning modulo axioms, while [3] does not support reasoning modulo
axioms. More recently, Nakamura et al. [29] propose incremental techniques for prov-
ing termination, confluence, and sufficient completeness of OBJ specifications. Their
inference system is also based on the notion of constructor subsignatures, handles con-
ditional equations, and provides sufficient conditions for ensuring such an incremental
extension in a modular way. However, for ground confluence, their method has been
developed for extensions that preserve the set of critical pairs relative to the extended
specification.

35

Different tools and techniques have been proposed for proving and disproving con-
fluence. Tools such as CSI [28] or ACP [1] are automatic confluence provers for first-
order rewrite systems. These tools implement different criteria for proving both con-
fluence and non-confluence.

This work has addressed a thorny and important problem in reasoning about equa-
tional programs and algebraic specifications with an initial algebra semantics: the fact
that in practice a substantial number of such programs and specifications are perfectly
reasonable and there is nothing wrong with them, yet they are not locally confluent and
therefore fall outside the scope of the standard methods to prove them ground conver-
gent. As the HF-SETS example has shown, it would be quite mistaken to assume that,
since our program is perfectly reasonable, we should be able to complete it in some
Knuth-Bendix-like fashion. This need not be the case since, as HF-SETS has shown,
we can hit a non-orientability “wall” that cannot be surpassed by standard completion
methods.

We have proposed a general methodology to help verify the ground convergence
of a given equational program based on the synergistic combination of three methods,
called Methods 1–3. Method 1, going back to [14], uses unjoinable critical pairs as
hints for transforming the original specification by adding new rules suggested by such
critical pairs to try to make the specification locally confluent or to, at least, reduce the
number of critical pairs. Method 2 uses inductive joinability proof methods to show the
remaining critical pairs ground joinable. Furthermore, using the same inductive join-
ability proof techniques, Method 2 can prove that the original specification was already
ground convergent and that its initial algebra semantics has been preserved by its subse-
quent extensions using Method 1. Method 3 is hierarchical in nature: it can be used to
prove the ground local confluence of a conditional equational specification whose con-
ditions belong to a subspecification that has already been proved ground confluent and
operationally terminating and that is conservatively extended by the overall specifica-
tion in an appropriate sense. These methods apply to a very general class of functional
programs, namely, to operationally terminating conditional order-sorted specifications
modulo axioms such as associativity and/or commutativity and/or identity. In particu-
lar, any operationally terminating order-sorted functional module in Maude can benefit
from these methods. The HF-SETS and RAT-ACU programs show that Methods 1–3
can be effective in proving the ground confluence of highly non-trivial functional pro-
grams. In particular, the proof of ground confluence of an order-sorted specification of
the rationals had remained open for decades.

Future work suggested by this work includes: (i) mechanization of the inductive
joinability inference system of Method 2 in its most general form, i.e., for conditional
specification; (ii) mechanization of Method 3; (iii) integration of Methods 2–3 within
the Maude Formal Environment; this integration will be important both to facilitate
the use of the methods and to discharge associated proof obligations such as standard
joinability of critical pairs, proofs of operational termination, and inductive proofs of
equational properties; (iv) further experimentation with these methods on a rich col-
lection of examples; and (v) development of additional proof techniques extending or
complementing those presented here as suggested by further experiments.

36

Acknowledgments. The first author was partially supported by Spanish MINECO/FEDER
project TIN2014-52034-R and Univ. Málaga, Campus de Excelencia Internacional
Andalucía Tech. The second author was partially supported by NRL under contract
number N00173-17-1-G002. The third author was partially supported by CAPES, Col-
ciencias, and INRIA via the STIC AmSud project “EPIC: EPistemic Interactive Con-
currency” (Proc. No 88881.117603/2016-01).

References

[1] Aoto, T., Yoshida, J., Toyama, Y.. Proving confluence of term rewriting systems
automatically. In: Treinen, R., editor. Rewriting Techniques and Applications,
20th International Conference, RTA. Springer; volume 5595 of Lecture Notes in
Computer Science; 2009. p. 93–102.

[2] Avenhaus, J., Loría-Sáenz, C.. On conditional rewrite systems with extra vari-
ables and deterministic logic programs. In: Pfenning, F., editor. Logic Pro-
gramming and Automated Reasoning, 5th International Conference, LPAR 1994,
Proceedings. Springer; volume 822 of Lecture Notes in Computer Science; 1994.
p. 215–229.

[3] Bouhoula, A.. Simultaneous checking of completeness and ground conflu-
ence for algebraic specifications. ACM Transactions on Computational Logic
2009;10(3):1–33. doi:10.1145/1507244.1507250.

[4] Bruni, R., Meseguer, J.. Semantic foundations for generalized rewrite theories.
Theoretical Computer Science 2006;360(1-3):386–414. doi:10.1016/j.tcs.
2006.04.012.

[5] Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer,
J., Talcott, C.L.. All About Maude - A High-Performance Logical Frame-
work, How to Specify, Program and Verify Systems in Rewriting Logic. vol-
ume 4350 of Lecture Notes in Computer Science. Springer, 2007. doi:10.1007/
978-3-540-71999-1.

[6] Clavel, M., Durán, F., Eker, S., Meseguer, J., Lincoln, P., Martí-Oliet, N., Tal-
cott, C.. All About Maude – A High-Performance Logical Framework. Springer
LNCS Vol. 4350, 2007.

[7] Cohen, P.. Set Theory and the Continuum Hypothesis. W.A. Benjamin, 1966.

[8] Comon-Lundh, H., Delaune, S.. The finite variant property: How to get rid of
some algebraic properties. In: Giesl, J., editor. Term Rewriting and Applications,
16th International Conference, RTA. Springer; volume 3467 of Lecture Notes
in Computer Science; 2005. p. 294–307. URL: https://doi.org/10.1007/
978-3-540-32033-3_22. doi:10.1007/978-3-540-32033-3_22.

[9] Dershowitz, N., Jouannaud, J.P.. Rewrite systems. In: van Leeuwen, J., editor.
Handbook of Theoretical Computer Science, Vol. B. North-Holland; 1990. p.
243–320.

37

http://dx.doi.org/10.1145/1507244.1507250
http://dx.doi.org/10.1016/j.tcs.2006.04.012
http://dx.doi.org/10.1016/j.tcs.2006.04.012
http://dx.doi.org/10.1007/978-3-540-71999-1
http://dx.doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-32033-3_22
https://doi.org/10.1007/978-3-540-32033-3_22
http://dx.doi.org/10.1007/978-3-540-32033-3_22

[10] Durán, F., Lucas, S., Marché, C., Meseguer, J., Urbain, X.. Proving operational
termination of membership equational programs. Higher-Order and Symbolic
Computation 2008;21(1-2):59–88. doi:10.1007/s10990-008-9028-2.

[11] Durán, F., Lucas, S., Meseguer, J.. MTT: the maude termination tool
(system description). In: Armando, A., Baumgartner, P., Dowek, G.,
editors. Automated Reasoning, 4th International Joint Conference, IJCAR.
Springer; volume 5195 of Lecture Notes in Computer Science; 2008. p. 313–319.
URL: https://doi.org/10.1007/978-3-540-71070-7_27. doi:10.1007/
978-3-540-71070-7_27.

[12] Durán, F., Lucas, S., Meseguer, J.. Termination modulo combinations of equa-
tional theories. In: Ghilardi, S., Sebastiani, R., editors. Frontiers of Combining
Systems, 7th International Symposium, FroCoS. Springer; volume 5749 of Lec-
ture Notes in Computer Science; 2009. p. 246–262.

[13] Durán, F., Meseguer, J.. A Church-Rosser checker tool for conditional order-
sorted equational Maude specifications (long version); 2010. Available at http:
//maude.lcc.uma.es/CRChC.

[14] Durán, F., Meseguer, J.. On the Church-Rosser and coherence properties of
conditional order-sorted rewrite theories. Journal of Logic and Algebraic Pro-
gramming 2012;81(7-8):816–850.

[15] Durán, F., Meseguer, J., Rocha, C.. Proving ground confluence of
equational specifications modulo axioms. In: Rusu, V., editor. Rewriting
Logic and Its Applications - 12th International Workshop, WRLA. Springer;
volume 11152 of Lecture Notes in Computer Science; 2018. p. 184–204.
URL: https://doi.org/10.1007/978-3-319-99840-4_11. doi:10.1007/
978-3-319-99840-4_11.

[16] Durán, F., Meseguer, J., Rocha, C.. Proving Ground Confluence of Equational
Specifications Modulo Axioms. Technical Report 2142/99548; University of Illi-
nois; Urbana, USA; 2018.

[17] Durán, F., Rocha, C., Álvarez, J.M.. Towards a Maude Formal Environment.
In: Agha, G., Danvy, O., Meseguer, J., editors. Formal Modeling: Actors,
Open Systems, Biological Systems. Springer; volume 7000 of Lecture Notes in
Computer Science; 2011. p. 329–351. doi:10.1007/978-3-642-24933-4_17.

[18] Escobar, S., Sasse, R., Meseguer, J.. Folding variant narrowing and optimal
variant termination. J Algebraic and Logic Programming 2012;81:898–928.

[19] Futatsugi, K., Diaconescu, R.. CafeOBJ Report. World Scientific, 1998.

[20] Goguen, J., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.P.. Introduc-
ing OBJ. In: Software Engineering with OBJ: Algebraic Specification in Action.
Kluwer; 2000. p. 3–167.

38

http://dx.doi.org/10.1007/s10990-008-9028-2
https://doi.org/10.1007/978-3-540-71070-7_27
http://dx.doi.org/10.1007/978-3-540-71070-7_27
http://dx.doi.org/10.1007/978-3-540-71070-7_27
http://maude.lcc.uma.es/CRChC
http://maude.lcc.uma.es/CRChC
https://doi.org/10.1007/978-3-319-99840-4_11
http://dx.doi.org/10.1007/978-3-319-99840-4_11
http://dx.doi.org/10.1007/978-3-319-99840-4_11
http://dx.doi.org/10.1007/978-3-642-24933-4_17

[21] Goguen, J.A., Meseguer, J.. Order-sorted algebra I: Equational deduction for
multiple inheritance, overloading, exceptions and partial operations. Theoret-
ical Computer Science 1992;105(2):217–273. doi:10.1016/0304-3975(92)
90302-V.

[22] Hendrix, J., Meseguer, J., Ohsaki, H.. A sufficient completeness checker for
linear order-sorted specifications modulo axioms. In: Automated Reasoning.
Springer; 2006. p. 151–155.

[23] Hrbacek, K., Jech, T.J.. Introduction to Set Theory. 3rd ed.; volume 45 of
Monographs and textbooks in pure and applied mathematics. M. Dekker, 1999.

[24] Lucas, S., Meseguer, J.. Normal forms and normal theories in conditional rewrit-
ing. J Log Algebr Meth Program 2016;85(1):67–97.

[25] Meseguer, J.. Membership algebra as a logical framework for equational specifi-
cation. In: Goos, G., Hartmanis, J., Leeuwen, J., Presicce, F.P., editors. Recent
Trends in Algebraic Development Techniques. Springer; volume 1376; 1998. p.
18–61. doi:10.1007/3-540-64299-4_26.

[26] Meseguer, J.. Strict coherence of conditional rewriting modulo axioms. Theo-
retical Computer Science 2017;672:1–35.

[27] Meseguer, J.. Variant-based satisfiability in initial algebras. Sci Comput Program
2018;154:3–41.

[28] Nagele, J., Felgenhauer, B., Middeldorp, A.. CSI: new evidence - A progress
report. In: de Moura, L., editor. Automated Deduction, 26th International Con-
ference on Automated Deduction, CADE. Springer; volume 10395 of Lecture
Notes in Computer Science; 2017. p. 385–397.

[29] Nakamura, M., Ogata, K., Futatsugi, K.. Incremental Proofs of Termination,
Confluence and Sufficient Completeness of OBJ Specifications. In: Iida, S.,
Meseguer, J., Ogata, K., editors. Specification, Algebra, and Software. Springer;
volume 8373 of Lecture Notes in Computer Science; 2014. p. 92–109. doi:10.
1007/978-3-642-54624-2_5.

[30] Rocha, C., Meseguer, J.. Constructors, Sufficient Completeness, and Deadlock
Freedom of Rewrite Theories. In: Fermüller, C.G., Voronkov, A., editors. Logic
for Programming, Artificial Intelligence, and Reasoning - 17th International Con-
ference, LPAR-17. Springer; volume 6397 of Lecture Notes in Computer Science;
2010. p. 594–609. doi:10.1007/978-3-642-16242-8_42.

39

http://dx.doi.org/10.1016/0304-3975(92)90302-V
http://dx.doi.org/10.1016/0304-3975(92)90302-V
http://dx.doi.org/10.1007/3-540-64299-4_26
http://dx.doi.org/10.1007/978-3-642-54624-2_5
http://dx.doi.org/10.1007/978-3-642-54624-2_5
http://dx.doi.org/10.1007/978-3-642-16242-8_42

Appendix A. Checking RE ` (∀X) t ↓ u

Let RE = (Σ, B,
−→
E) with Σ = (S ,≤, F) be the rewrite theory obtained from E =

(Σ, E] B), and let R≈
E

= (Σ≈, B,
−→
E≈) extend RE by:

1. extending (S ,≤) to (S ≈,≤≈) by adding to each connected component [s] ∈ S/≡≤
a top sort [s] with s′ ≤ [s] for each s′ ∈ [s];

2. adding a fresh new sort Prop with constant tt;

3. adding for each [s] ∈ S/≡≤ an operator
_ ≈ _ : [s] [s] −→ Prop

4. adding to
−→
E the rules

{x : [s] ≈ x : [s]→ tt | [s] ∈ S/≡≤}.

Lemma 2. For any t, u ∈ TΣ(X) with [ls(t)] = [ls(u)]:
RE ` (∀X) t ↓ u iff R≈E ` (∀X) (t ≈ u)→∗ tt.

For RE operationally terminating, RE ` (∀X) t ↓ u can be effectively checked in
Maude by executing in the system module mod R≈

E
endm the search command:

search t ≈ u⇒! tt .

giving us a decision procedure for deciding RE ` (∀X) t ↓ u.
Note that the above result applies not just for E = (Σ, E]B) an unconditional theory,

but also for E conditional and satisfying the requirements in [14], namely, when RE is:

1. strongly deterministic;

2. strictly coherent modulo B; and

3. operationally terminating.

Therefore, reasoning about joinability in RE can be done under conditions (1)–(3)
also for conditional theories and have the equivalence

RE ` (∀X) t ↓ u iff R≈E ` (∀X) (t ≈ u)→∗ tt.

and the implementation in Maude by search applying as well to conditional theories
satisfying (1)–(3). In particular, this applies to the checking of joinability for the con-
ditional theories of hereditarily finite sets in Section 4, which have some conditional
equations for set intersection.

Appendix B. Specification of a Number Hierarchy

The following modules specify natural numbers, integers and rationals. The speci-
fication of natural and integer numbers have been divided between the sub-specification
with the finite variant property (-FVP) and the rest of the ACU specification (-ACU).

40

fmod NAT-FVP is
protecting TRUTH-VALUE .
sorts Nat NzNat Zero .
subsorts Zero NzNat < Nat .
op 0 : -> Zero [ctor] .
op 1 : -> NzNat [ctor] .
op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0 prec 33] .
op _+_ : NzNat NzNat -> NzNat [ctor assoc comm id: 0 prec 33] .
op p : NzNat -> Nat . *** predecessor
op d : Nat Nat -> Nat [comm] . *** symmetric difference
op __ : Nat Nat -> Nat . *** monus
op _~_ : Nat Nat -> Bool [comm] . *** equality predicate
op _>_ : Nat Nat -> Bool .

vars N M : Nat .
vars N’ M’ : NzNat .

eq [NAT-FVP-01]: p(N + 1) = N [variant] .
eq [NAT-FVP-02]: d(N + M, N) = M [variant] .
eq [NAT-FVP-03]: (N + M) \ N = M [variant] .
eq [NAT-FVP-04]: N \ (N + M) = 0 [variant] .
eq [NAT-FVP-05]: N ~ N = true [variant] .
eq [NAT-FVP-06]: (N + M’) ~ N = false [variant] .
eq [NAT-FVP-07]: M + N + 1 > N = true [variant] .
eq [NAT-FVP-08]: N > N + M = false [variant] .
eq [NAT-FVP-09]: N’ > 0 = true [variant] .

endfm

fmod NAT-ACU is
protecting NAT-FVP .
op quot : Nat NzNat -> Nat . *** quotient
op gcd : NzNat NzNat -> NzNat [comm] . *** greatest common divisor
op _*_ : Nat Nat -> Nat [assoc comm prec 31] .
op _*_ : NzNat NzNat -> NzNat [assoc comm prec 31] .

vars N M : Nat .
vars N’ M’ K’ : NzNat .
var N? : [Nat] .

eq [NAT-ACU-01]: quot(N’ + M’, M’) = 1 + quot(N’, M’) .
eq [NAT-ACU-02]: quot(M’, M’) = 1 .
eq [NAT-ACU-03]: quot(M, N’ + M) = 0 .
eq [NAT-ACU-04]: gcd(N’, N’) = N’ .
eq [NAT-ACU-05]: gcd(N’ + M’, M’) = gcd(N’, M’) .
eq [NAT-ACU-06]: N? * 0 = 0 .
eq [NAT-ACU-07]: N? * 1 = N? .
eq [NAT-ACU-08]: N’ * (M’ + K’) = (N’ * M’) + (N’ * K’) .

endfm

fmod INT-FVP is
protecting NAT-FVP .
sorts NzNeg NzInt Int .
subsorts Nat NzNeg < Int .
subsorts NzNat NzNeg < NzInt < Int .
op -_ : NzNat -> NzNeg [ctor] .
op -_ : Int -> Int .
op -_ : NzInt -> NzInt .
op _+_ : Int Int -> Int [assoc comm id: 0 prec 33] .
op _+_ : NzInt NzInt -> NzInt [assoc comm id: 0 prec 33] .
op |_| : Int -> Nat . *** absolute value
op |_| : NzInt -> NzNat .
op p : Int -> Int . *** predecessor
op _~_ : Int Int -> Bool [comm] . *** equality predicate
op _>_ : Int Int -> Bool .

vars N’ M’ : NzNat .
var N : Nat .
var I’ : NzInt .

41

eq [INT-FVP-01]: - 0 = 0 [variant] .
eq [INT-FVP-02]: - - I’ = I’ [variant] .
eq [INT-FVP-03]: | N | = N [variant] .
eq [INT-FVP-04]: | - N’ | = N’ [variant] .
eq [INT-FVP-05]: p(0) = - 1 [variant] .
eq [INT-FVP-06]: p(- N’) = -(N’ + 1) [variant] .
eq [INT-FVP-07]: - N’ ~ - M’ = N’ ~ M’ [variant] .
eq [INT-FVP-08]: - N’ ~ N = false [variant] .
eq [INT-FVP-09]: - N’ > - M’ = M’ > N’ [variant] .
eq [INT-FVP-10]: - N’ > N = false [variant] .
eq [INT-FVP-11]: N > - N’ = true [variant] .

endfm

fmod INT-ACU is
protecting INT-FVP .
protecting NAT-ACU .
op quot : Int NzInt -> Int .
op gcd : NzInt NzInt -> NzNat [comm] .
op _*_ : Int Int -> Int [assoc comm prec 31] .
op _*_ : NzInt NzInt -> NzInt [assoc comm prec 31] .

vars I’ J’ H’ : NzInt .
vars N’ M’ : NzNat .
var Q : NzNeg .

eq [INT-ACU-01]: quot(0, Q) = 0 .
eq [INT-ACU-02]: quot(- N’, M’) = - quot(N’, M’) .
eq [INT-ACU-03]: quot(N’, - M’) = - quot(N’, M’) .
eq [INT-ACU-04]: quot(- N’, - M’) = quot(N’, M’) .
eq [INT-ACU-05]: gcd(- N’, I’) = gcd(N’, I’) .
eq [INT-ACU-06]: I’ * - J’ = - (I’ * J’) .
eq [INT-ACU-07]: I’ * (J’ + H’) = (I’ * J’) + (I’ * H’) .
eq [INT-ACU-08]: - I’ + - J’ = - (I’ + J’) .
eq [INT-ACU-09]: - (I’ + - J’) = - I’ + J’ .

endfm

fmod RAT-ACU is
protecting INT-ACU .
sorts Rat NzRat PosRat NzPosRat .
subsort Int < Rat .
subsorts Nat NzPosRat < PosRat < Rat .
subsorts NzInt < NzRat < Rat .
subsorts NzNat < NzPosRat < NzRat PosRat .
op _/_ : NzRat NzRat -> NzRat [prec 31] . *** division
op _/_ : NzInt NzNat -> NzRat [ctor prec 31] .
op _/_ : NzNat NzNat -> NzPosRat [ctor prec 31] .
op -_ : Rat -> Rat .
op _+_ : Rat Rat -> Rat [assoc comm id: 0 prec 33] .
op _+_ : PosRat PosRat -> PosRat [assoc comm id: 0 prec 33] .
op _*_ : Rat Rat -> Rat [assoc comm prec 31] .
op _*_ : NzRat NzRat -> NzRat [assoc comm prec 31] .
op |_| : Rat -> PosRat . *** absolute value
op _~_ : Rat Rat -> Bool [comm] . *** equality predicate
op _>_ : Rat Rat -> Bool .

vars I’ J’ : NzInt .
vars R’ S’ : NzRat .
vars N’ M’ : NzNat .

eq [RAT-ACU-01]: 0 / N’ = 0 .
ceq [RAT-ACU-02]: J’ / M’ = quot(J’, gcd(J’, M’)) / quot(M’, gcd(J’, M’))

if gcd(J’, M’) > 1 = true . *** canonical form of fraction
eq [RAT-ACU-03]: R’ / 1 = R’ .
eq [RAT-ACU-04]: I’ / - N’ = - I’ / N’ .
eq [RAT-ACU-05]: I’ / (J’ / M’) = (I’ * M’) / J’ .
eq [RAT-ACU-06]: (I’ / N’) / J’ = I’ / (N’ * J’) .
eq [RAT-ACU-07]: (I’ / N’) / (J’ / M’) = (I’ * M’) / (N’ * J’) .

42

eq [RAT-ACU-08]: - (I’ / N’) = - I’ / N’ .
eq [RAT-ACU-09]: J’ + (I’ / N’) = ((J’ * N’) + I’) / N’ .
eq [RAT-ACU-10]: (I’ / N’) + (J’ / M’) = ((I’ * M’) + (J’ * N’)) / (N’ * M’) .
eq [RAT-ACU-11]: (I’ / N’) * 0 = 0 .
eq [RAT-ACU-12]: (I’ / N’) * J’ = (I’ * J’) / N’ .
eq [RAT-ACU-13]: (I’ / N’) * (J’ / M’) = (I’ * J’) / (N’ * M’) .
eq [RAT-ACU-14]: | I’ / N’ | = | I’ | / N’ .
eq [RAT-ACU-15]: 0 ~ R’ = false .
eq [RAT-ACU-16]: (I’ / N’) ~ J’ = I’ ~ (J’ * N’) .
eq [RAT-ACU-17]: (I’ / N’) ~ (J’ / M’) = (I’ * M’) ~ (J’ * N’) .
eq [RAT-ACU-18]: 0 > N’ / M’ = false .
eq [RAT-ACU-19]: 0 > - N’ / M’ = true .
eq [RAT-ACU-20]: N’ / M’ > 0 = true .
eq [RAT-ACU-21]: - N’ / M’ > 0 = false .
eq [RAT-ACU-22]: I’ > (J’ / M’) = (I’ * M’) > J’ .
eq [RAT-ACU-23]: (I’ / N’) > J’ = I’ > (J’ * N’) .
eq [RAT-ACU-24]: (I’ / N’) > (J’ / M’) = (I’ * M’) > (J’ * N’) .

endfm

43

	Introduction
	Method 1: Incremental Joining of Critical Pairs
	Method 2: Inductive Proof of Ground Joinability of Critical Pairs
	Method 3: Hierarchical Proof of Ground Joinability of Conditional Critical Pairs

	Preliminaries
	Method 1: An Equational Specification for Hereditarily Finite Sets
	Method 2: Proving Ground Joinability
	Proving the Ground Convergence of HF-SETS with Method 2
	Method 3: Hierarchical Conditional Ground Joinability Techniques
	A Rational Numbers Example
	Hierarchical Conditional Ground Confluence Techniques
	Confluence of the RAT-ACU module
	Conditional critical pair RAT-ACU1000
	Conditional critical pair RAT-ACU1530
	Conditional critical pair RAT-ACU3326
	Conditional critical pair RAT-ACU5555

	Related Work and Conclusion
	Church-Rosser Check of the HF-SETS-3 and its Submodules
	Termination of the HF-SETS-3 and its Submodules
	Sufficient Completeness of the HF-SETS Module
	Sufficient completeness of the definition of _in_
	Sufficient completeness of the definition of _&_

	Checking RE(X)t "3223379 u
	Specification of a Number Hierarchy
	Sufficient Completeness of the Number Hierarchy
	Sufficient Completeness for a subset of RAT-ACU
	Sufficient Completeness of the Specification of Natural Numbers
	Sufficient Completeness of _>_
	Sufficient Completeness of __
	Sufficient Completeness of d(_,_)
	Sufficient Completeness of _"026E30F _
	Sufficient Completeness of quot(_,_)
	Sufficient Completeness of gcd(_,_)

	Sufficient Completeness of the Specification of Integer Numbers
	Sufficient Completeness of _>_
	Sufficient Completeness of __
	Sufficient Completeness of quot(_,_)
	Sufficient Completeness of gcd(_,_)

	Church-Rosser Check of the RAT-ACU module
	Joinability of the Critical Pairs given for the RAT-ACU Specification
	ccp RAT-ACU1190 for RAT-ACU-08 and RAT-ACU-02
	ccp RAT-ACU3536 for INT-FVP-06 and RAT-ACU-02
	ccp RAT-ACU4006 for NAT-ACU-02 and RAT-ACU-02
	ccp RAT-ACU4943 for RAT-ACU-10 and RAT-ACU-02
	ccp RAT-ACU5070 for RAT-ACU-09 and RAT-ACU-02
	ccp RAT-ACU5197 for INT-ACU-09 and RAT-ACU-02
	ccp RAT-ACU5288 for RAT-ACU-10 and RAT-ACU-02
	ccp RAT-ACU5336 for NAT-ACU-03 and RAT-ACU-02
	ccp RAT-ACU5551 for RAT-ACU-02 and RAT-ACU-08
	ccp RAT-ACU5553 for RAT-ACU-02 and RAT-ACU-13
	ccp RAT-ACU5556 for RAT-ACU-02 and RAT-ACU-13
	ccp RAT-ACU5559 for RAT-ACU-02 and RAT-ACU-08
	ccp RAT-ACU5560 for RAT-ACU-02 and RAT-ACU-05
	ccp RAT-ACU5562 for RAT-ACU-02 and RAT-ACU-06
	ccp RAT-ACU5563 for RAT-ACU-02 and RAT-ACU-07
	ccp RAT-ACU5564 for RAT-ACU-02 and RAT-ACU-07
	ccp RAT-ACU5565 for RAT-ACU-02 and RAT-ACU-14
	ccp RAT-ACU5571 for RAT-ACU-02 and RAT-ACU-05
	ccp RAT-ACU5573 for RAT-ACU-02 and RAT-ACU-06
	ccp RAT-ACU5574 for RAT-ACU-02 and RAT-ACU-07
	ccp RAT-ACU5575 for RAT-ACU-02 and RAT-ACU-07
	ccp RAT-ACU5576 for RAT-ACU-02 and RAT-ACU-18
	ccp RAT-ACU5578 for RAT-ACU-02 and RAT-ACU-22
	ccp RAT-ACU5579 for RAT-ACU-02 and RAT-ACU-23
	ccp RAT-ACU5580 for RAT-ACU-02 and RAT-ACU-24
	ccp RAT-ACU5581 for RAT-ACU-02 and RAT-ACU-24
	ccp RAT-ACU5582 for RAT-ACU-02 and RAT-ACU-20
	ccp RAT-ACU5584 for RAT-ACU-02 and RAT-ACU-16
	ccp RAT-ACU5585 for RAT-ACU-02 and RAT-ACU-17
	ccp RAT-ACU5587 for RAT-ACU-02 and RAT-ACU-18

	Sort-decreasingness of the RAT-ACU Module

