
Symbolic Computation in Maude:
Some Tapas

José Meseguer

Department of Computer Science
University of Illinois at Urbana-Champaign, USA

Abstract. Programming in Maude is executable mathematical modeling. Your mathe-
matical model is the code you execute. Both deterministic systems, specified equationally
as so-called functional modules and concurrent ones, specified in rewriting logic as system
modules, are mathematically modeled and programmed this way. But rewriting logic is
also a logical framework in which many different logics can be naturally represented. And
one would like not only to execute these models, but to reason about them at a high level.
For this, symbolic methods that can automate much of the reasoning are crucial. Many
of them are actually supported by Maude itself or by some of its tools. These methods
are very general: they apply not just to Maude, but to many other logics, languages and
tools. This paper presents some tapas about these Maude-based symbolic methods in an
informal way to make it easy for many other people to learn about, and benefit from, them.

1 Introduction

1.1 What is Maude?
Maude is a high-performance declarative language whose modules are theories in rewriting
logic, a simple, yet expressive, computational logic to specify and program concurrent systems
as rewrite theories. A rewrite theory is a triple R“pΣ,EYB,Rq where:
– Σ specifies a signature of typed function symbols.
– pΣ,EYBq is an equational theory specifying the concurrent system’s states as elements of

the algebraic data type (initial algebra) TΣ{EYB defined by pΣ,EYBq.
– R are rewrite rules specifying the system’s local atomic transitions.
– ConcurrentComputation“Deduction in R“Concurrent Rewriting in R.
In Maude, a rewrite theory R named FOO is specified —with mostly self-explanatory syntax—
as a so-called system module of the form: mod FOO is pΣ,EYB,Rq endm.

But, since when R“H, R“pΣ,EYB,Rq becomes just an equational theory, Maude has a
functional sublanguage of so-called functional modules. A functional module BAR is specified
as follows: fmod BAR is pΣ,EYBq endfm, where:
– BĎtA,C,Uu is any combination of associativity (A) and/or commutativity (C) and/or identity

(U) axioms, specified with the corresponding assoc, comm, and id: keywords, and
– the equations E, when used as left-to-right simplification rules, are convergent, i.e., Church-

Rosser and terminating,1 modulo the axioms B.
We make the exact same assumptions about B and E for a system module mod FOO is

pΣ,EYB,Rq endm. What this intuitively means is that the states of the concurrent system so
specified enjoy structural axioms B, and can also have state-updating functions computable
by equational left-to-right simplification with the equations E modulo B.

1 Termination can of course be dropped for some applications: the lambda calculus or a deterministic
Turing machine can be easily specified as functional modules in Maude.

1.2 Symbolic Computation in Maude

Since all computation in Maude is performed by logical deduction in equational logic and/or
rewriting logic, talking about symbolic computation seems tautological. But it isn’t. The point
is that the usual computations in a functional or system module involve elements of an algebraic
data type TΣ{EYB, which are represented as ground terms (terms without variables) in the syntax
of Σ. But Maude supports many useful computations involving terms with variables. For exam-
ple, for u and v terms with variables among the x1,...,xn, solving the so-called EYB-unification
problem upx1,...,xnq“? vpx1,...,xnq means answering the question of whether the constraint
upx1,...,xnq“vpx1,...,xnq is satisfiable in the algebraic data type TΣ{EYB for some instantiation
of the variables x1,...,xn. So, roughly speaking, problems involving logical variables and their
solutions are those I shall describe as symbolic computation problems. Maude, either directly
or through Maude-based tools, supports the following symbolic computation features:

1. B-Unification (modulo any BĎtA,C,Uu),
2. B-Generalization (modulo any BĎtA,C,Uu),
3. E,B-Variants of a term t in a convergent pΣ,EYBq, which is finitary iff pΣ,EYBq has the

finite variant property (FVP), in the sense explained in Section 4,
4. EYB-Unification for any convergent pΣ,EYBq, which is finitary iff pΣ,EYBq is FVP,
5. Domain-Specific SMT-Solving, thanks to CVC4 [19] and Yices [74] interfaces,
6. Theory-Generic SMT-Solving for FVP theories pΣ,EYBq under natural requirements

about their constructors,
7. Symbolic Reachability Analysis of any system module mod pΣ,EYB,Rq endm with
pΣ,EYBq FVP,

8. B-Homeomorphic Embedding (modulo any BĎtA,Cu).

In this paper I will focus on features (1), (3)–(4), and (6)–(7) in the above list. For generaliza-
tion modulo B —which is dual to unification and is also called “anti-unification”— please see
[4, 2]. Homeomorphic embedding is a very useful relation for termination criteria in various sym-
bolic analyses. It has been generalized for the first time to work in an order-sorted setting and mod-
ulo combinations of associativity and commutativity axioms, with new efficient algorithms, in [1].
Both generalization and homeomorphic embedding modulo axioms are crucial components of
the variant-based partial evaluation (PE) approach for Maude functional modules presented in [3].

1.3 Tapas and Paper Napkins

To explain the symbolic features (1), (3)–(4), and (6)–(7) requires explaining some basic technical
ideas that convey the precise meaning of such features. But this runs the risk of getting us bogged
down in technicalities. How shall we proceed? I propose that we use our imagination a little: think
of this paper as an informal conversation that you, dear reader, and I are having in a Tapas Bar,
as we share some pleasant tapas and wash them down with some good Rioja. The bar’s setting is
informal: instead of sitting at a formal table, we sit at a small wooden table where there is a stack
of small paper napkins. Tapas are now gradually making their appearance at two levels: each time
our waiter brings us the next tapas serving, there are also some Maude tapas that I explain to you
by scribbling on the paper napkins in the stack. The Maude tapas have to be small, since these are
cocktail napkins. I have also brought my laptop to run a few examples; but the main action is our
conversation, scribbling on paper napkins. Of course, a few technicalities have to be glossed over:
I just give you the main intuitions; but I promise to email you some material to fill in those details
later. This is what we are going to do here. In this paper, that more precise technical background
can be found in Section 7 and in the list of references; but let us disregard all that for now.

2 First Tapas Serving: Rewriting Modulo Axioms B

I have always claimed and felt that Maude, unlike other programming languages, can be
explained on a paper napkin to somebody with no prior acquaintance with computing. Here
is the example I would write on such a napkin:

fmod NATURAL is
sort Nat .
op 0 : -> Nat [ctor] .
op s : Nat -> Nat [ctor] .
op _+_ : Nat Nat -> Nat .

vars N M : Nat .

eq N + 0 = N .
eq N + s(M) = s(N + M) .
endfm

This module, defining natural number addition in Peano notation, does of course fit the general
pattern fmod BAR is pΣ,EYBq endfm, where here the module’s name BAR is NATURAL,
the typed signature Σ has a single type (called a sort in Maude), which we have chosen to call
Nat, a constant 0 and two function symbols: s and _+_, where the underbars indicate ar-
gument positions, and where the ctor attribute is declared for 0 and s as data constructors
to distinguish them from the defined function _+_, which is defined by the two equations E.
In this case there are no atributes B, although, if we wished, we could have declared _+_ with
the assoc and comm keywords as an associative and commutative operator.

How do we compute with this module? By simplifying any arithmetic expression to its
result as a data value, i.e., either to 0 or to snp0q for some ně 1, using the two equations
E to perform left-to-right replacement of equals for equals in the usual way this is done in
algebraic simplification. This process is called term rewriting; and the result of thus simplifying
an expression is called its normal form. Let us see (in another paper napkin) how this process
reduces adding 2 plus 2, i.e., the arithmetic expression s(s(0)) + s(s(0)) to 4, i.e., the data
value s(s(s(s(0)))). For this, it is useful to add some simple notation to indicate where in an
expression a simplification is applied. I will use the notation trus to indicate that we are focusing
on the subexpression u of the expression, or term, t. The process in this notation is as follows:

rspsp0qq`spsp0qqsÑ sprspsp0qq`sp0qsqÑ spsprspsp0qq`0sqqÑ spspspsp0qqq
where we have applied the second equation in the first two steps, and the first equation in the
last step, to corresponding instances by some matching substitution instantiating the equation’s
variables to the term or subterm to be simplified. For example, in the second step, the variables
N and M have been instantiated by the substitution θ“tN ÞÑ spsp0qq,M ÞÑ 0u, so that the
subterm we focus on, spsp0qq`sp0q, becomes an instance of the pattern term N`spMq in the
second equation’s lefthand side, and is replaced in this step by the corresponding instance of
the righthand side spN`Mq. We can summarize this (focused) step in the following notation:

spsp0qq`sp0q”pspNq`MqθÑ spN`Mqθ” spspsp0qq`0q
where” denotes syntactic equality, and tθ denotes the result of instantiating a pattern term, i.e.,
a term with variables t, by a substitution θ.

But Maude’s functional modules do support this kind of algebraic simplification modulo
structural axioms B. Let us illustrate this case with a simple example (it fits on another paper
napkin) of a data type of sets:

fmod SET is
sort Set .
ops mt a b c d e f g : -> Set [ctor] .
op _U_ : Set Set -> Set [ctor assoc comm] . *** union
vars S S’ : Set .

eq S U mt = S [variant] . *** identity
eq S U S = S [variant] . *** idempotency
eq S U S U S’ = S U S’ [variant] . *** idempotency
endfm

Its constants are a b c d e f g and the empty set constant mt. There is also a union operator,
for which we have chosen2 the syntax _U_, which has been declared associative pAq and
commutative pCq by the assoc and comm attributes. Note that in this module all constants
and _U_ are data constructors. Set union is defined by the three equations (the third one follows
from the second: it is added for technical reasons) of mt as identity element for set union, and
set idempotency. Disregard for the moment the [variant] attribute in the equations: it will
become clear in Section 4. Let us see an example of how we compute in this module modulo AC.

mtYraYcYbYaYbsÑrmtYaYbYcsÑaYbYc

where we have used the third equation in the first step, and the first equation in the second step.
Note that, because of associativity, we, as well as the Maude parser, can dispense with parentheses.
The most interesting step is the first one, which uses the substitution θ“tS ÞÑpaYbq,S 1 ÞÑcu.
This step can be applied because:

pSYSYS 1qθ”paYbqYpaYbqYc“AC aYcYbYaYb.

Since, thanks to the AC axioms, reordering and parentheses do not matter, the crucial point
is that the subterm aYcYbYaYb is an instance of the lefthand side pattern SYSYS 1 modulo
AC. For the same reason, the fact that mt appears on the left of the expression instead than on
the right is no obstacle for applying the first equation in the second step modulo AC.

It can be easily checked that the equations in NATURAL, resp. SET, are convergent, and there-
fore the normal forms of, for example, spsp0qq`spsp0qq, resp. mtYaYcYbYaYb, namely,
spspspsp0qqq, resp. aYbYc, are unique modulo B, regardless of the order in which the equations
are applied to the original term. For example, bYcYa is the same normal form as aYbYc
modulo AC. The Maude command computing a term’s normal form is the reduce command.

A little notation does not hurt anybody. The process of performing one step of rewriting a
term t (focusing on some subterm) using one of the equations in E modulo the axioms B to
obtain a term t1 is called E,B-rewriting, and is denoted tÑE,B t1. Likewise, tÑ˚

E,B t1 denotes
performing zero, one or more steps of E,B-rewriting. The special case when B“H is called
E-rewriting, and then we use the notation tÑE t1 and tÑ˚

E t1. The E,B-normal form of term
t (unique up to B-equality assuming E convergent) is denoted t!E,B, resp. t!E when B“H.

2 In Maude, all syntax for sort and operator names is user-definable.

3 Second Tapas Serving: Unification and Narrowing Modulo B

As already mentioned, solving a B-unification problem upx1,...,xnq“?vpx1,...,xnqmeans answer-
ing the question of whether the constraint upx1,...,xnq“vpx1,...,xnq is satisfiable in the algebraic
data type TΣ{B, where terms are identified modulo the axioms B, such as any combination of
A and/or C and/or U axioms. The case B“H is called syntactic unification. It is well-known
from the Prolog language, where the analog of the data type TΣ is the so-called Herbrand model,
which extends TΣ by adding predicate symbols. Maude supports unification modulo B in any
module where the axioms B have been declared. Furthermore, this B-unification is order-sorted,
i.e., it is carried out with variables which can have different sorts, where some of them can be
subsorts of other sorts. In particular, since for the module NATURAL we have B“H, we can
perform syntactic unification in it with Maude’s unify command.

Since the syntactic case is well-known, and we will revisit it soon, let us focus instead on
the more interesting case of the SET module, where we can perform AC-unification. What
does this mean? Except for the fact that we are not dealing with the equation making mt the
identity for _U_, this means that we can solve multiset equations, as opposed to solving set
equations (but, please, be patient: we will also solve set equations in the next serving of tapas).
For example, we may wish to solve the multiset equation: aYaYbYS “aYcYS 1, that is,
seek substitutions θ such that paYaYbYS qθ“AC paYcYS 1qθ, i.e., both side instances yield
the same multiset. We can do so in Maude by giving the command:

Maude> unify in SET : a U a U b U S =? a U c U S’ .

Unifier 1
S --> c U #1:Set
S’ --> a U b U #1:Set

Unifier 2
S --> c
S’ --> a U b

where the second solution is the most obvious, and the first solution allows adding to the multiset
aYaYbYc obtained by the second solution an extra multiset denoted by the extra variable
#1:Set.

Maude supports unification modulo any possible combinations of A, C, and U axioms in
B; also when some operators in Σ are declared associative but are not declared commutative.
This is noteworthy, since it is well-known that the number of A-unifiers (or AU-unifiers) of
a problem can be infinite. For example, if a is a constant and ¨ is associative, then the equation
a¨x“ x¨a has the infinite set of solutions: ttx ÞÑanu|ně1u. When some operators are A or
AU only, Maude’s implementation of B-unification takes the following pragmatic approach: (i)
the unification algorithm is designed to favor the cases where the number of A or AU-unifiers is
known to be finite; and (ii) in all other cases, it searches for solutions in a complete manner, but
within a bound, so that: (a) if all solutions are found before reaching the bound, it just returns
them, but (b) if the bound is reached without the certainty of having found all solutions, the
solutions already found are returned with a warning that the set of solutions may be incomplete.
The good news is that, for a good number of applications —for example in the symbolic analysis
of various cryptographic protocols involving associativity axioms— such warnings are never
encountered, i.e., the corresponding analyses are then, luckily, complete.

Narrowing. This is just technical jargon for symbolic execution, in the usual sense one would
expect: executing a program, not on concrete inputs, but on “symbolic” inputs specified by
variables [38, 40]. In our case, a Maude functional module and a term with variables in its
syntax. For example, in our NATURAL functional module for natural number addition, the
symbolic expression x`y cannot be evaluated in the standard sense: it is already in normal
form, since no equation in NATURAL can be used to further simplify it. However, it can be
executed symbolically. What does this mean? It means answering the following question:

Are there instances of x`y that can be executed in the standard sense? And, if so, can
we systematically describe them and their results?

The answer, for any equational theory pΣ,EYBq where the equations E are convergent mod-
ulo the axioms B is an emphatic Yes! The method is very simple, and amounts to a slight general-
ization of the already-described E,B-rewriting relationÑE,B between terms, to the more general
E,B-narrowing relation{E,B between terms. What is this generalization like? Very simple: we
replace the process of B-matching a subterm u as a substitution instance of the lefthand side t of
an equation t“ t1 by one of B-unifying t and u, that is, of solving the equation t“?u modulo B.

In which sense is this a slight generalization? In the precise sense that when u is a ground term,
i.e., it has no variables, then B-unification coincides with B-matching. For example, the matching
substitution θ“tS ÞÑpaYbq,S 1 ÞÑcu by which we showed that pSYSYS 1qθ“AC aYcYbY
aYb is indeed an AC-unifier (not the only one) of the equality pSYSYS 1q“?aYcYbYaYb.

The crucial point, however, is that when the term u to be evaluated does have variables,
B-unification is strictly more general than B-matching and makes symbolic execution possible:
because we now view the variables of u as logical variables in the Prolog sense, which can
be instantiated. Let us see how x`y can be symbolically executed this way. In NATURAL we
have two equations E“tN`0“N,N`spMq“ spN`Mqu. Focusing on the entire term x`y
we get two corresponding unification problems N`0“? x`y and N` spMq“? x`y with
respective unifiers θ0“tN ÞÑ x,y ÞÑ0u and θ1“tN ÞÑ x,M ÞÑy1,y ÞÑ spy1qu. Applying these
substitutions to the righthand sides of the equations we get the narrowing steps:

rx`ys{θ0
E x and rx`ys{θ1

E spx`y1q
where we have indicated for each step the substitution used: θ0, resp. θ1. Narrowing is never
performed on variables, so the first narrowing step cannot be continued. But the second can,
focusing on the subterm x`y1, again in two ways, by the substitutions: θ10“tN ÞÑ x,y1 ÞÑ0u
and θ11“tN ÞÑ x,M ÞÑy2,y1 ÞÑ spy2qu, yielding narrowing steps:

sprx`y1sq{θ10
E spxq and sprx`y1sq{θ11

E spspx`y2qq
And, obviously, since spxq cannot be unified with any lefthand side, it is only the second term
(focusing on x`y2) that can be narrowed again, in exactly the same way, ad infinitum. We get
this way what is called an (infinite) narrowing tree rooted at our original term x`y. But we could
have started with any other term in the syntax of NATURAL. In the same way, but in this case per-
forming unification modulo AC, the three equations E in the SET module define a narrowing
relation{E,AC which performs symbolic execution of set expressions. Of course, we also have a

reflexive-transitive closure{˚E,AC, which, when annotated with a substitution,
θ
{˚E,AC makes ex-

plicit the composed or “accumulated” substitution θ“θ1¨¨¨θn for a length-n narrowing sequence.
Note the interesting fact that, although the equations E of a convergent theory, such as
NATURAL or SET, are always terminating, the associated narrowing relation{E,B in general
is not. When does it terminate? This is a topic that we can save for the next tapas serving.

4 Third Tapas Serving: Variants, and Unification Modulo EYB

Let us you, dear reader, DR, and I, JM, play a little language game à la Wittgenstein. JM: What
is a variant? DR: I don’t know what you are talking about. JM: I mean, what is a variant in the
Comon-Delaune [18] sense? DR: I don’t know: you tell me. JM: An answer to a question. DR:
Which question? JM: What are the normal forms that a term t in a Maude functional module
evaluates to? DR: But the answer to your question is trivial, since we have already seen that,
since the module’s equations E are assumed convergent modulo its axioms B, up to B-equality
there is just one answer, namely, the unique normal form t!E,B of t, which is the answer provided
by Maude’s reduce command. JM: Sorry, what I really meant is: What are the normal forms
that a term t symbolically evaluates to? Or, slightly more broadly: What are the normal forms of
the instances of t by various substitutions? DR: Well, that sounds more interesting. Can you give
me an example? JM: Why, of course! We have just seen an example! DR: Where? JM: In the
last paper napkin I scribbled for you, where I sketched the narrowing tree for x`y. DR: What

do you mean? JM: (1) A little reflection shows that, if we have a narrowing sequence: t
θ
{˚E,Bu,

and u is normalized, then, by construction, u“B ptθq!E,B and u is therefore a variant in the exact
sense I meant. (2) But if you inspect the narrowing tree for x`y, all the terms in that tree are
either of the form: snpxq, ně0, or snpx`y1nq, ně1, which are all in normal form. So they are all
variants of x`y in the sense I just meant. DR: Ok, now I see your point. This looks interesting.
Tell me more. JM: Of course, these terms are not all the variants of x`y. But they cover all
the variants of x`y as instances. For example, the substitution θ“tx ÞÑ sp0`x1q,y ÞÑ spspzqqu
yields the variant: ppx`yqθq!E “ spspsp0` x1q`zqq, which is itself an instance of the term
spspx`y2qq in x`y’s narrowing tree. Therefore, —because of the so-called lifting property
of narrowing (references in Section 7.2)— we can use a term’s t narrowing tree to compute
a complete set of most general variants of t by just selecting those narrowing paths in such

a tree of the form t
θ
{˚E,Bu, where u is normalized. A little more notation cannot hurt. For

technical reasons, we do not call such a u a variant of t. Instead, we formally define that variant
as the pair pu,θq. This is because we might have a quite different pu1,γq, with u1 just a variable
renaming of u, obtained by a completely different narrowing path t

γ
{˚E,Bu1, and where γ itself

might not be a variable renaming of θ. We shall see examples like this during this tapas serving.

The Finite Variant Property. Here are two closely-related, yet different, questions. Given a
Maude functional module, say, fmod BAR is pΣ,EYBq endfm, as always with E assumed
convergent modulo B,
1. When is it the case that any term t in this module has a finite, complete set of most general

variants —i.e., that, up to B-equality, any other variant of t is a substitution instance of one in
this finite set? If this holds, we then say that pΣ,EYBq has the finite variant property (FVP).

2. When does E,B-narrowing terminate for any term t in this module?
Since, as we have just seen, a complete set of variants of a term t can be computed by narrow-

ing, if E,B-narrowing terminates for all inputs t, then pΣ,EYBq is obviously FVP. But the con-
verse does not hold in general: a term t may have a finite set of most general variants and yet have
an infinite narrowing tree. Why? Because we should do something smarter than just generating
t’s narrowing tree. The problem we can easily face when generating t’s narrowing tree is that, after
a while, if we had looked carefully enough, we would have seen it all. That is, seen that any vari-
ant to be generated further down the (infinite!) tree is going to be an instance of one that we have
already seen. But how can we find that out, since the tree is infinite? By using the folding variant
narrowing strategy in [27]. This strategy has the useful property that: (1) pΣ,EYBq is FVP iff (2)

folding variant E,B-narrowing terminates for any input term t. Folding variant narrowing com-
putes the desired finite set of most general variants of a term t when pΣ,EYBq is FVP; and in all
cases —i.e., for any convergent pΣ,EYBq— it computes a complete set of variants of t, which
may of course be infinite. For example, NATURAL is not FVP. This is obvious from the fact
that, for any two n,kě1, the terms snpx`y1nq and sn`kpx`y1nq have disjoint sets of instances.

But how does folding variant narrowing work? As its name suggests, by folding. That is, we
do not generate a tree, but a graph in a breadth first way. But when we generate a new normalized
node, we do not just add it to the graph: we first check to see if in the graph generated so far we
already have another node of which this new one is an instance and, if so, we fold the new node
into that most general instance. If at some depth all new generated nodes must be folded, then we
have terminated with a finite graph that contains a set of most general variants of the input term t.

Folding variant narrowing has been implemented in Maude. The set of variants of a term
t can be computed with Maude’s get variants command. Since in general this set can be
infinite, the user can provide a bound n to get the first n variants of a term t. But how can we
know if a given pΣ,EYBq is FVP? This property is undecidable [8]. However, as explained
in [12], if pΣ,EYBq is actually FVP, provided that B-unification is finitary,3 we can find this
out very easily in Maude by computing the variants of each term f px1,...,xnq for each function
symbol f in Σ. For example, our SET example, which can easily be shown convergent, is FVP,
since Maude provides the following answer:

Maude> get variants in SET : S U S’ .

Variant 1
Set: #1:Set U #2:Set
S --> #1:Set
S’ --> #2:Set

Variant 2
Set: %1:Set
S --> mt
S’ --> %1:Set

Variant 3
Set: %1:Set
S --> %1:Set
S’ --> mt

Variant 4
Set: %1:Set
S --> %1:Set
S’ --> %1:Set

Variant 5
Set: %1:Set U %2:Set U %3:Set
S --> %1:Set U %2:Set
S’ --> %1:Set U %3:Set

Variant 6

3 As already mentioned, if B contains axioms of associativity without commutativity, B-unification
will not be finitary. The FVP property has been studied for this more general case in [49].

Set: %1:Set U %2:Set
S --> %1:Set U %2:Set
S’ --> %2:Set

Variant 7
Set: %1:Set U %2:Set
S --> %2:Set
S’ --> %1:Set U %2:Set

No more variants.

which shows that SET is FVP. Note that, in general, a functional module’s equational theory
pΣ,EYBq need not be FVP. In reality, what the get variants command for a term t provides
is a very space-efficient way of describing the narrowing tree of a term t, not as a tree, but as a
graph with folding storing only normalized nodes. In comparison with the tree description itself,
this space efficiency is enormous in all cases; and in the FVP case it can reduce an infinite tree to
a finite graph. Pragmatically, —particularly in the case of axioms such as AC where the number
of unifiers of a unification problem can be huge and therefore the narrowing tree can have large
degrees of branching— the difference between a term’s narrowing tree and its narrowing graph
with folding is one between a hopeless procedure that can be easily overwhelmed at very small
tree depths and a practical procedure that can be used in many applications.

Constructor Variants. As we have seen in the NATURAL and SET modules, Maude supports
the distinction between constructor operators, which build data and are specified with the ctor
attribute, e.g., 0 and s in NATURAL, and the remaining defined function symbols, like _+_
in NATURAL. This offers a very natural distinction at the level of variants: we call a variant
pu,θq of a term t a constructor variant iff u is a constructor term, that is, a term built using
only constructor symbols and variables. Since in the SET module all symbols are constructor
symbols, the above seven variants of the term S U S’ are all constructor variants. Instead, in
the already-described complete set of variants for the term x`y in NATURAL, only the family of
terms tsnpxq|ně0u are constructor variants. This distinction between variants and constructor
variants will prove useful in our next tapas serving.

Variant EYB-Unification. So far, we have only discussed Maude’s algorithm for B-unification,
with B any combination of A, C, and U axioms. Though very useful, this is also very limited.
Assuming, as I will do throughout, that all sorts are inhabited, i.e., algebraic data types that do
not have empty types/sorts, what B-unification really means is that we can answer satisfiability
questions for constraints of the form:

Ź

1ďiďnui“vi in algebraic data types of the form TΣ{B.
But, of course, what we would like to be able to do is to solve the same kind of constraints for
any Maude functional module, under the assumptions that it is convergent and that its equations
are unconditional. That is, to be able to solve the above constraints over algebraic data types
of the form TΣ{EYB. In other words, to perform EYB-unification. For example, we already
saw that for pΣ,EYACq the equational theory of the SET module, AC-unification, i.e., solving
equations in TΣ{AC essentially amounted to multiset unification —up to a minor quibbling about
the empty set that could have been solved adding an extra U axiom. But what we really would
like to perform is set unification, i.e., to solve constraints of the above form in the data type
TΣ{EYAC of sets. Can we do this? The answer is Yes! Because we can reduce such a unification

problem to one of computing variants. Let us see how. All we need to do4 is to add to our
functional module of choice a new sort Pred of predicates with constant true, and a new
equality predicate. Let us illustrate this idea for the SET module, extended to the module:

fmod SET-EQ is protecting SET .
sort Pred . *** Predicates sort
op true : -> Pred [ctor] .
op _=?_ : Set Set -> Pred [ctor] . *** equality predicate
vars S S’ : Set .

eq S =? S = true [variant] . *** equality definition
endfm

It is easy to check that this module is also FVP. This is a general fact: the extension of an FVP
theory pΣ,EYBq to a theory pΣ“?,E“?YBq by adding an equality predicate “? is always
also FVP. This can be easily checked in this example by computing the variants of the term
S =? S’. Recall that, using AC unification, we were able to answer the multiset unification

problem: a U a U b U S =? a U c U S’. But what we would like to do is to solve the set
unification problem: a U a U b U S =? a U c U S’. We can do so by computing variants
in SET-EQ of the equality term a U a U b U S =? a U c U S’. Maude returns 88 such
variants. But the only ones that interest us are those of the form: ptrue,θq, since those θ are the
desired unifiers for this set unification problem. There are only 24 variants of the form ptrue,θq,
which give us our desired family of set unifiers. Here are the first and the last of these:

Maude> get variants in SET-EQ : a U a U b U S =? a U c U S’ .
...

Variant 2
Pred: true
S --> c U %1:Set
S’ --> b U %1:Set
...

Variant 88
Pred: true
S --> b U c
S’ --> a U b U c

But why are these the unifiers of our set equation? Never let a theorem that fits on a paper napkin
go to waste! Because, as explained in Section 7.2, for any convergent theory pΣ,EYBq we have the
Church-Rosser Equivalence: t“EYB t1ô t!E,B“B t1!E,B. Therefore, a substitution θ solves an equation
u“?v in TΣ{EYB iff puθq!E,B“B pvθq!E,B, i.e., iff ppu“?vqθq!E“?,B“B true. That is, iff θ is an instance
of some γ in some variant of u“?v of the form ptrue,γq. q.e.d. Note that this proof is much more general
than: (i) solving equations for the SET module; (ii) solving equations for any FVP theory pΣ,EYBq;
since (iii) it solves them for any convergent theory pΣ,EYBq. That is, this method provides a general
EYB-unification procedure for any convergent theory pΣ,EYBq, which we call the variant unification
procedure. However, the case when pΣ,EYBq is FVP is noteworthy since, if B-unification is finitary
(the case when any A axiom is also AC), then variant EYB-unification is also finitary and in fact a

4 For simplicity, I treat the case of solving a single equation. The case of solving systems of equalities
and disequalities can likewise be treated by adding a binary conjunction operator to Pred with identity
true.

satisfiability decision procedure. That is, we can decide in a finite number of steps whether a constraint
of the form

Ź

1ďiďn ui “ vi is satisfiable in the algebraic data type TΣ{EYB. For the same reason, we
can also decide the satisfiability in TΣ{EYB of any positive (no negations) DNF formula of the form:
Ž

1ďiďn

Ź

1ďi. jďni
ui. j“vi. j. This suggests the question: What about satisfiability of any quantifier free

(QF) formula in TΣ{EYB? We will revisit this question in the next tapas serving.

EYB-unification is so important that, rather than solving a EYB-unification problem u“?v by computing
the variants of the term u“?v in pΣ“?,E“?YBq, which would yield other useless variants, Maude supports
it directly in pΣ,EYBq, for systems of equations

Ź

1ďiďnui“ vi, by the variant unify command.
But since the set of EYB-unifiers computed this way often contains some unifiers that are less general
than some other unifier in the set and are therefore redundant, Maude also supports a somewhat more
expensive —yet quite practical for reducing the size of many symbolic search problems— command
that filters out redundant EYB-unifiers, namely, the filtered variant unify command. For our
example, it reduces the number of set unifiers from 24 to 9:

Maude> filtered variant unify in SET : a U b U c U S =? a U b U S’ .

Unifier 1
S --> %1:Set
S’ --> c U %1:Set

Unifier 2
S --> a U #1:Set
S’ --> c U #1:Set

Unifier 3
S --> b U #1:Set
S’ --> c U #1:Set

Unifier 4
S --> #1:Set
S’ --> a U c U #1:Set

Unifier 5
S --> #1:Set
S’ --> b U c U #1:Set

Unifier 6
S --> a U b U %1:Set
S’ --> c U %1:Set

Unifier 7
S --> a U %1:Set
S’ --> b U c U %1:Set

Unifier 8
S --> b U %1:Set
S’ --> a U c U %1:Set

Unifier 9
S --> %1:Set
S’ --> a U b U c U %1:Set

No more unifiers.

5 Fourth Tapas Serving: Variant Satisfiability

In computer science, decision procedures are used to automate reasoning about data types. In a conventional
language, such data types may include integers, rational numbers, strings of characters, arrays, and so
on. There is typically a finite collection of such data types used in a given programming language, which
are often well supported by current SMT solvers. A theorem prover to verify programs in a conventional
language can make very good use of such decision procedures to automate large portions of a program’s
proof of correctness. In Maude the situation is quite different. Why? Because in Maude algebraic data
types are completely user-definable. That is, any functional module fmod BAR is pΣ,EYBq endfm
for any, finitely specifiable, convergent equational theory pΣ,EYBq can be specified by a Maude user
to define the algebraic data type TΣ{EYB of his/her choice. And, unlike the case of a conventional language,
there is an infinite collection of such data types. Of course, for some specific Maude data types, for example
integers or rationals, existing domain-specific decision procedures supported by an SMT solver may be
available. But to automate reasoning about arbitrary Maude functional modules as much as possible, we
need a new kind of SMT solving: what I call theory-generic decision procedures, which apply, not to
a given data domain, but to an infinite class of user-definable data types. The generic decision procedure
in question is called variant satisfiability [56], and is what this tapas serving is about.

The first piece of good news is that, for B any combination of A, C, and U axioms, where any A
symbol f must also be C, satisfiability of QF formulas in the data type TΣ{B is decidable [56]. The
million-dollar question is: How can we take advantage of this piece of good news to obtain a much
more general theory-generic satisfiability decision procedure to help us reason about any algebraic data
type TΣ{EYB defined by a Maude functional module fmod BAR is pΣ,EYBq endfm? Of course, we
know a priori that the class of algebraic data types TΣ{EYB for which we can hope to have decidable
satisfiability, even if infinite, must have some restrictions: since just for the data type of natural numbers
with addition and multiplication, that is, just by adding a multiplication operator ˚ and the equations
N˚0“0,N˚spMq“N`pN˚Mq to our NATURAL module, Gödel’s Incompleteness Theorem rears its
head dashing all our decidable satisfiability hopes to the ground. So, one way to both rephrase the original
question and advance towards an answer is to ask the more precise question:

Given a Maude functional module fmod BAR is pΣ,E Y Bq endfm, is there a general
method by which we could seek, and find, a sublanguage of QF formulas, say, determined by
a subsignature Σ1ĎΣ such that satisfiability of QF Σ1-formulas in TΣ{EYB is decidable?

What is promising about trying to answer this question is its practical character: hoping for decidable
satisfiability of just any algebraic data type is both an act of self-delusion and a mark of ignorance. But
hoping for a subclass of formulas enjoying decidable satisfiability is an eminently practical idea, which
can help automate large parts of a program’s proof of correctness effort.

The second piece of good news is that a general method answering the above question does indeed
exist. It is based on the idea of a telescope, i.e., a chain of convergent theory inclusions of the form:

pΩ,BΩqĎpΣ1,E1YB1qĎpΣ,EYBq

such that: (i)Ω is the subsignature of operators that were specified as constructors, with the ctor atribute,
in the functional module specifying pΣ,EYBq, (ii) BΩĎB are the axioms declared for such constructors,
(iii) the constructors are true constructors, i.e., for any ground term in the syntax of Σ we have t!E,BPTΩ,
(iv) any uPTΩ is already in normal form: u“BΩ u!E,B, and (v) the intermediate theory pΣ1,E1YB1q is
convergent, has also Ω as its constructors, is FVP, and any A symbol f PΣ1 is also C.

The third and last piece of good news is that, under conditions (i)–(v), satisfiability of QF Σ1-formulas
in TΣ{EYB is decidable [56], which is what we were fishing for; and there is a theory-generic satisfiability
decision procedure for such formulas, namely, variant satisfiability [56]. Of course, at the very least we

may have pΩ,BΩq“pΣ1,E1YB1q, and in that case just get decidable satisfiability for QF Ω-formulas in
TΣ{EYB. But quite often, finding an FVP pΣ1,E1YB1q having a strict containment pΩ,BΩqĂpΣ1,E1YB1q

is relatively easy to do. For example, any selector functions for the constructors in Ω will automatically
be in pΣ1,E1YB1q [30].

Eh bien! But how does this theory-generic decision procedure work? Recall that solving the problem of
the satisfiability in the data type TΣ{EYB of any QF Σ1-formula ϕ means to either: (i) effectively exhibiting
a solution, i.e., a ground substitution ρ such that the ground formula ϕρ is true in TΣ{EYB [which by our
telescope is the case iff ϕρ is true in TΣ1{E1YB1], or (ii) effectively showing that there is no such solution.
If this problem is solvable, in one blow, we have also solved the validity problem for a QF Σ1-formula
ϕ in TΣ{EYB. That is, we can either: (i) effectively prove that ϕ is a theorem of TΣ{EYB, or (ii) effectively
show a counterexample when it is not: since ϕ will be a theorem of TΣ{EYB iff ϕ is unsatisfiable in
TΣ{EYB. We will solve the satisfiability problem for a QF Σ1-formula ϕ in TΣ{EYB by reducing it to that
of the satisfiability of QF Ω-formulas in TΩ{BΩ , which we already know how to decide. Since, without
loss of generality, we may assume ϕ in DNF, that is,

ϕ”
ł

1ďiďn

p
ľ

1ďi. jďni

ui. j“vi. j^
ľ

1ďi.kďmi

wi.k,w1i.kq

it is enough to decide the satisfiability of a Σ1-conjunction of literals
Ź

1ďiďnui“vi^
Ź

1ď jďmw j,w1j.
But we already know how to decide the satisfiability of the positive part by variant unification. Therefore,
the problem reduces to solving the satisfiability of:

ł

αPUnif E1YB1
p
Ź

1ďiďnui“viq

p
ľ

1ď jďm

w j,w1jqα

That is, it is enough to decide the satisfiability of a Σ1-conjunction of disequalities
Ź

1ď jďmw j,w1j. But,
as sketched out in Footnote 4, we can view such a conjunction of disequalities as a term in the FVP theory
pΣ“?

1 ,E1YB1q, which has pΩ“?,BΩq as its subspecification of constructors [i.e., Ω“? contains true, ^
and , as added constructors]. But, if we now recall the notion of constructor variants, this reduces
to the equivalent problem of deciding the satisfiability of the disjunction of conjunctions of Ω-disequalities:

ł

1ďiďn

p
ľ

1ď jďm

qi
j,ri

jq

in TΩ{BΩ , where the t
Ź

1ď jďm qi
j , ri

j | 1 ď i ď nu are the constructor variants of the Σ“?
1 -term:

Ź

1ď jďmw j,w1j. So, we have reduced the problem to one of QF satisfiability in TΩ{BΩ and we are done!

To be really done, we just need to know how satisfiability of a conjunction of Ω-disequalities
Ź

1ď jďm q j , r j is decided in TΩ{BΩ . But this is really easy [56]. First of all, we can reduce to the
case where each variable xi : si in the conjunction ranges over a sort si such that TΩ{BΩ,si is an infinite set:
since if any x j : s j ranges over a finite set TΩ{BΩ,s j , we can replace our conjunction by a disjunction of
conjunctions where x j : s j has been instantiated in all possible ways by one of the values in the finite set
TΩ{BΩ,s j . Under this infinite-sorts assumption, the conjunction

Ź

1ď jďmq j,r j is satisfiable in TΩ{BΩ iff
q j,BΩ r j, 1ď jďm, which is a trivial check in Maude.

Presburger Arithmetic on a Paper Napkin. There are entire book chapters on Presburger arithmetic
decision procedures. But to give you a feeling for the general applicability of variant satisfiability, the
good news is that by now you already know everything you need to know to realize that satisfiability of
QF formulas in Presburger arithmetic is decidable, and to decide any such QF formula by yourself in
Maude. The theory of Presburger arithmetic does indeed fit on a paper napkin, as the functional module:

fmod PRESBURGER is protecting TRUTH-VALUE .
sort Nat .
ops 0 1 : -> Nat [ctor] .

op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .
op _>_ : Nat Nat -> Bool .
vars N M K : Nat .

eq N + 1 + M > N = true [variant] .
eq N > N + M = false [variant] .
endfm

which imports TRUTH-VALUE, with just two constants true, false of sort Bool. Note that in PRES-
BURGER we have just specified natural number addition as the free commutative monoid generated by 1
with 0 as the identity element. This module is FVP, as one can easily check by computing the three variants
of the term N > M for its only defined symbol _>_. Furthermore, all its other operators define a subsignature
Ω of constructor symbols, so that it has a constructor subspecification of the form pΩ,ACUq. Therefore, sat-
isfiability of QFΩ-formulas in TΩ{ACU is decidable. And so is also the satisfiability of QF formulas in Pres-
burger arithmetic by our theory-generic variant satisfiability procedure. For example, the transitivity law Ną
M“true^MąK“trueñNąK“true is valid, because its negation NąM“true^MąK“
true^NąK,true is unsatisfiable, since we get a single solution for the variant unification problem:

Maude> filtered variant unify in PRESBURGER : N > M =? true /\ M > K =? true .

Unifier 1
N --> 1 + 1 + %1:Nat + %2:Nat + %3:Nat
M --> 1 + %1:Nat + %2:Nat
K --> %2:Nat

No more unifiers.

and when we compute the instantiation pNąKqθ for this unifier θ and reduce it to its normal form we get:

Maude> reduce 1 + 1 + %1:Nat + %2:Nat + %3:Nat > %2:Nat .

result Bool: true

making the disequality true, true unsatisfiable. q.e.d. Of course, since variant satisfiability is a very general
theory-generic procedure, there is no fair competition possible with a highly optimized domain-specific
algorithm for Presburger arithmetic. But this is OK for three reasons: (i) as already mentioned, Maude has
interfaces to both the CVC4 and Yices SMT solvers, so optimized implementations of Presburger arithmetic
are available that way; (ii) variant satisfiability’s sweetspot is not in competing with already existing,
optimized domain-specific decision procedures, but rather in complementing such procedures by making
SMT solving extensible to an infinite class of user-definable algebraic data types; and (iii) nevertheless, a
variant satisfiability procedure for Presburger arithmetic is not entirely useless: other colleagues and I have
used it in various automated deduction applications, and —as we shall see in a moment— it enjoys the non-
negligible advantage of having a seamless integration with other variant satisfiability decision procedures.

A Decision Procedure for S-Expressions. This might seem like a bad example to pick in order to show
the usefulness of variant satisfiability; but it isn’t. After all, domain-specific decision procedures for LISP’s
S-Expressions go back, at least, to the one by the late Derek Oppen [62]; and similar procedures are a
dime a dozen in the SMT solving literature. So, why beating a dead horse? Because it isn’t dead. The
dirty little secret is that all the procedures of this kind I am aware of are problematic. Why so? They are
problematic in their corner cases, namely, in cases when an S-Expression can be undefined. For example,
according to the LISP 1.5 Programmer’s Manual [45], expressions such as car[A] or cdr[A] for A
an atom are undefined. The problem is that all the S-Expression decision procedures I am aware of are
based on either unsorted or many-sorted first-order logic. But, as my late friend Joseph Goguen and I

showed in [58], the problem of faithfully specifying data types involving partial functions such as those for
the data selectors car and cdr in LISP, cannot be solved in unsorted or many-sorted first-order logic.5

But, as we showed in [58], it is solved by specifying such data types in order-sorted equational logic;
or in the even more general membership equational logic [53] used by Maude’s functional modules. The
upshot of all this is that the existing decision procedures are forced to cut some corners: the answers you
will get in such corner cases are anybody’s guess or, if documented, they will depend on some arbitrary
choices about how to make such partial functions total in the undefined cases.

So, the horse is not really dead yet. And there is something to be gained by revisiting this venerable
topic of decision procedures for S-Expressions as a representative instance of the much more general
problem of having faithful decision procedures for algebraic data types with constructors and selectors.
Furthermore, it gives me a good opportunity to introduce you, dear reader, to the expressive power of
order-sorted specifications in Maude, which is actually crucial for many variant satisfiability procedures.

LISP is of course an untyped language. However, what might be called LISP’s ontology of S-Expressions,
which is part of the lore and essential to know what you are doing when programming in LISP, is captured
by the following structure of subsorts of the main sort SExp. Since S-Expressions are parametric on the
type of Atoms, which are basic data values, like numbers, Booleans, identifiers, etc., this can be specified
in Maude as a parameterized module with the TRIV parameter theory, which just has an Elt parameter
sort/type that can be instantiated to any chosen sort/type of basic values, i.e., of atoms.

fmod S-EXP{A :: TRIV} is protecting TRUTH-VALUE .
sorts List NeList NLExp NLPair SExp .
subsorts NeList < List < SExp .
subsorts A$Elt NLPair < NLExp < SExp .
op nil : -> List [ctor] .
op [_._] : SExp SExp -> SExp [ctor] .
op [_._] : SExp List -> NeList [ctor] .
op [_._] : SExp NLExp -> NLPair [ctor] .
op car_ : NeList -> SExp . *** left selector
op car_ : NLPair -> SExp . *** left selector
op cdr_ : NeList -> List . *** right selector
op cdr_ : NLPair -> NLExp . *** right selector
ops atom? nelist? list? nlpair? nlexp? : SExp -> Bool . *** sort preds

var A : A$Elt . var NeL : NeList . var L : List .
var NLE : NLExp . var NLP : NLPair . var SE : SExp .

eq car[SE . L] = SE [variant] . eq cdr[SE . L] = L [variant] .
eq car[SE . NLE] = SE [variant] . eq cdr[SE . NLE] = NLE [variant] .

eq atom?(A) = true [variant] . eq nelist?(NeL) = true [variant] .
eq atom?(NLP) = false [variant] . eq nelist?(nil) = false [variant] .
eq atom?(L) = false [variant] . eq nelist?(NLE) = false [variant] .
eq list?(L) = true [variant] . eq nlpair?(NLP) = true [variant] .
eq list?(NLE) = false [variant] . eq nlpair?(A) = false [variant] .
eq nlexp?(NLE) = true [variant] . eq nlpair?(L) = false [variant] .
eq nlexp?(L) = false [variant] .
endfm

This is the only example in this paper that may not fit on a cocktail paper napkin: we may have to unfold
one, or to ask our waiter for a dinner paper napkin. The main ideas about the ontology carved out by the

5 Unless of course such partial functions are represented as binary relations, or the specification itself
is changed by introducing coercion functions in the way Goguen and I showed in [29].

above subsort structure can be summarized by the following remarks about LISP lore: (1) An SExp is
either an Atom (of the parameter sort A$Elt), or nil, or a binary tree having either atoms or nil in
its leaves. (2) A List is either nil, or a binary tree whose rightmost leaf is nil. (3) A NeList is
a non-nil List. (4) A NLExp is any non-list SExp. (5) A NLPair is any non-atom NLExp. Of course,
car and cdr select the left, resp. right, subtrees of any S-Expression that is a binary tree. They make no
sense otherwise. The sort predicates have lower case names for their respective sorts: they are true for
elements of that sort, and false otherwise. Thanks to order-sortedness, some operators are overloaded.

This module is FVP. Termination is trivial, since all the equations decrease term size; confluence follows
from the absence of order-sorted critical pairs; full definition of functions can be easily checked by the
method in [47]; and FVP itself can be easily checked by computing variants for each of the defined
functions. For example, car and cdr have two variants each (for either of their typings), and the list?
predicate has three variants. As already pointed out, it would have been impossible to faithfully model LISP
S-Expressions in unsorted or many-sorted first-order logic. But there is more behind the module’s deceptive
simplicity: Even if we had not specified the car and cdr selectors that push this data type outside the
pale of many-sorted first-order logic, it would still have been impossible to specify predicates like list?
or nlexp? as FVP functions in an unsorted or many-sorted way. The reason for this impossibility is
that in such settings these predicates would have to recurse down the binary tree to check whether the
rightmost element is either nil or an atom; and this would have pushed those predicate definitions out
of the FVP fold. The moral of this story is that order-sorted first-order logic silently and kindly absorbs
into its syntax a lot of reasoning that would otherwise require quite complex first-order reasoning, in the
form of deducing implications between unary predicates modeling the non-existent subsorts.

Since the constructors of S-EXP do not satisfy any axioms and no equations apply to constructor terms,
we are again under the conditions ensuring decidable satisfiability. That is, we have a variant satisfiability
procedure for S-Expressions in a parametric way, in the same sense as for similar parametric variant satisfi-
ability procedures for lists, compact lists, multisets, sets, and hereditarily finite sets in [56]. What this means
in practice is that if we instantiate S-EXP{A :: TRIV} by choosing a sort of atoms in any FVP data type
that also satisfies the variant satisfiability conditions, then, any such instantiation (after checking termination
of the equations in the instantiation) is also FVP and does also have decidable satisfiability for its QF formu-
las. For example, we can instantiate the parameter sort Elt in TRIV to the Nat sort in PRESBURGER
by defining in Maude a view and then instantiating S-EXP{A :: TRIV} with this view as follows:

view Nat from TRIV to PRESBURGER is
sort Elt to Nat .
endv

fmod NAT-SEXP is
protecting S-EXP{Nat} .
endfm

In this instantiated module —whose termination proof is trivial, since all its equations are term-size
decreasing— we can decide the validity of both parametric theorems like: NeL“rpcar NeLq .pcdr NeLqs,
which hold for any instance of the module and could likewise have been defined directly for S-
EXP{A :: TRIV}, and that of theorems that only make sense for this instantiation, like the implication:

atom?pcarNLPq“ true^atom?pcdrNLPq“ trueñpcarNLPq`pcdrNLPqąpcarNLPq, false_pcdrNLPq“0

Let us prove both of these theorems by showing that their corresponding negations are unsatisfiable. In the
first example, the only constructor variant of the disequality NeL,rpcar NeLq .pcdr NeLqs is the clearly un-
satisfiable disequality rSE .Ls,rSE .Ls. q.e.d. In the second example we have to verify that the conjunction

atom?pcarNLPq“ true^atom?pcdrNLPq“ true^pcarNLPq`pcdrNLPqąpcarNLPq“ false^pcdrNLPq,0

is unsatisfiable. But the positive part of this conjunction has the single unifier θ“tNLP ÞÑrN .0su; and
then the canonical form of pcdrNLPqθ,0 is the unsatisfiable disequality 0,0. q.e.d.

Something interesting about this example is the seamless integration of the two variant satisfiability
decision procedures: the one for PRESBURGER and that for S-EXP{A :: TRIV}. This is in contrast to
the usual Nelson-Oppen (NO) combination procedure [60] required to reason in a combination of theories.
No such NO-combination procedure is needed at all for variant satisfiability: we just form the appropriate
union of theories (in this case by instantiating the S-EXP{A :: TRIV} with the Nat view), and that’s it!

6 Dessert: Narrowing-Based Symbolic Reachability Analysis

By now we have had a fairly substantial sampling of tapas: we should not push this too hard. Let me
end on a light, yet interesting, note by explaining to you what symbolic reachability analysis in Maude
is about, and some cool things you can do with it. It will be our dessert: a little divertimento. We have
remained all the time within Maude’s sublanguage of functional modules. But, of course, Maude’s most
unique capability is its declarative programming of concurrent systems by means of rewrite theories in
system modules of the form mod FOO is pΣ,EYB,Rq endm, where the system’s local concurrent
transitions are specified by the rules R using the rl keyword, as opposed to the eq keyword used for
equations. Such rules need not be terminating, and can be highly non-deterministic. Maude’s rewrite
command can simulate one possible execution sequence for such rules in a fair fashion; but there can
be many, many more possible executions. For many reasoning purposes, such as, for example, to check
that a cryptographic protocol is secure, one can perform reachability analysis in Maude to explore all
states reachable from a given one using Maude’s breadth first search command.

However, this may not be powerful enough in some cases: for example, if either the set of reachable
states or that of initial states is infinite. In such cases one can perform symbolic reachability analysis using
narrowing with Maude’s vu-narrow command. Thanks to our previous Maude tapas this command
is now quite easy to explain. Given a symbolic initial state specified by a term upx1,...,xnq describing a,
typically infinite, set of initial state instances, what this command does is to build a narrowing search graph
rooted at upx1,...,xnq. But there are three main differences with equational narrowing: (1) now we narrow
symbolic expressions, not with equations E, but with transition rules in R; (2) for each narrowing step,
instead of performing B-unification as before, we now perform EYB-unification with all the equations
in the rewrite theory; and (3) we check if we have reached a goal term vpy1,...,ynq using EYB-unification.
There are just two restrictions: (i) to be practical, we want to remain finitely branching, so we require the
equations EYB to be FVP to make sure the number of EYB-unifiers is finite; and (ii) we also assume that
the rules in R are topmost —i.e., that they rewrite the entire state—, which is easy to achieve in practice
by a theory transformation and ensures completeness of the analysis. The command has the form:

vu-narrow [n] in FOO : u(x1,...,xn) =>* v(y1,...,ym) .

where n is the number of desired solutions, upx1,...,xnq is the pattern for initial states, and vpy1,...,ynq is
the pattern describing the set of states that we wish to reach —or to show that we cannot reach, if they
are “bad” states. The meaning of this query is then to seek an answer to the following question:

Is there an instance of the set of initial states symbolically specified by upx1,...,xnq from which we
can reach an instance of the set of target states symbolically specified by vpy1,...,ynq by a sequence
of transitions from R in the FOO module? [upx1,...,xnq and vpy1,...,ynq can share some variables]

What Maude’s vu-narrow command provides is a complete method to get answers for such a question:
if an answer exists, we are guaranteed —except for the usual memory and time limitations— to find
it. The most common examples of this method involve analyzing the reachability properties of some
concurrent system. For example, the Maude-NPA tool [26] uses this kind of narrowing-based symbolic
reachability analysis (with some additional optimizations), to symbolically analyze security properties
of cryptographic protocols. But I wish to present a completely different kind of example, namely, a Logic
Programming (LP) interpreter, because it shows that rewriting logic and Maude have good properties not
only as a semantic framework to naturally specify and program concurrent systems, but also as a logical

framework [43] in which a logic’s inference rules can be naturally represented as rewrite rules. In this
case, the inference system in question is that of Horn Logic; and we get for free an LP interpreter whose
core is the following LP module importing the quoted identifiers module QID with sort Qid:

fmod LP is protecting QID .
sorts U UList Query .
subsorts Qid < U < UList .
op true : -> UList . *** true as "nil"
op _,_ : UList UList -> UList [assoc id: true] .
op _[_] : Qid UList -> U . *** term constructor
op {_} : UList -> Query .
endfm

This tiny functional module is all we need to define an interpreter for Logic Programming (LP) [without
negation as failure]; i.e., for computing with Horn Logic programs. Terms of sort U provide a universal
language for atomic predicates. For example, the binary atomic predicate spsp0qqą sp0q will be here rep-
resented as the term ’>[’s[’s[’0]],’s[’0]]. The sort Query is used for users of the LP interpreter
to enter queries. Such queries ask for a witness proving an existential formula of the form:

pDx1,...,xnq B1^...^Bk

which is here represented by a term {B1,...,Bk} of sort Query. Prolog’s depth first search makes it
incomplete. But this interpreter will be complete, i.e., if an answer to a query exists, it will be found. Let
me explain how we execute a Horn Logic program, i.e., a collection of Horn clauses, either of the form A,
some atomic predicate, or implications of the form: A1^...^AnÑA, with A1,...,An,A atomic predicates.
If we think of true as the empty conjunction, we can view all such Horn clauses as implications, since A is
equivalent to trueÑA. In LP, and also in proof theory, the conjunction symbol is often represented just by
a comma: , and therefore a Horn clause looks either like trueÑA or like A1,...,AnÑA. But in logic we
often take the goal we want to prove as our starting point and apply the inference rules in reverse to search
for a proof of the goal. Therefore, to compute with a set of Horn clauses, i.e., with an LP program, we
will use the clauses in reverse as rewrite rules: AÑ true and AÑA1,...,An. This representation would be
just fine for us to get an LP interpreter: we could make , associative-commutative with identity true and
perform symbolic reachability analysis from our goal B1,...,Bk —which we want to existentially prove by
finding a witness using the reversed rewrite rules of type AÑ true and AÑA1,...,An— by trying to reach
the term true, and thus a proof. This would work and would be complete; but it would be quite inefficient,
because the interpreter would waste a lot of time performing redundant symbolic searches. We can achieve
a much more efficient interpreter by introducing two seemingly small optimizations: (1) Make , just AU,
instead of ACU. This is harmless, since all lefthand sides of the reverse rules are single atoms. So, they
can be applied anywhere, i.e., the C axiom is unnecessary. (2) By using the operator t u in the above LP
module, we can further impose a left to right order in searching for proofs of each of our atom goals one at a
time. This will provide great efficiency. This suggests representing a clause in reverse of the form AÑ true
as the “clause in context” rewrite rule tA,LuÑtLu, taking advantage of the AU axioms, with L a variable
of sort ULIst. Likewise, we will represent a clause in reverse AÑA1,...,An as the “clause in context”
tA,LuÑtA1,...,An,Lu. This is just what we will do. For example, the following Horn clauses define the
reverse [mirror image] of a binary tree and a palindrome predicate on binary trees, where ^ is the binary
tree constructor and with the elements on tree leaves quoted identifiers; so Q ranges over quoted identifiers:
– revpQ,Qq
– revpT1,T4q,revpT2,T3qÑrevppT1^T2q,pT3^T4qq

– revpT,TqÑpalpTq

Using our “reversed clauses in context” transformation to compute with these clauses in search for a
proof of an existential query, we get the rewrite theory in the following Maude system module, where
the [narrowing] attribute instructs Maude that the so-marked rules will be used in narrowing search:

mod TREE-REVERSE&PALINDROME is protecting LP .
var Q : Qid . vars T T’ T1 T2 T3 T4 : U . var L : UList .

rl {(’rev[Q,Q]),L} => {L} [narrowing] .
rl {(’rev[(’ˆ[T1,T2]),(’ˆ[T3,T4])]),L}

=> {(’rev[T1,T4]),(’rev[T2,T3]),L} [narrowing] .
rl {(’pal[T]),L} => {(’rev[T,T]),L} [narrowing] .
endm

Solving queries for this logic program is just narrowing with the program’s rules! (in this case modulo
AU). And, thanks to the completeness of narrowing, such query solving is complete. For example:

Maude> vu-narrow [1] in TREE-REVERSE&PALINDROME :
{’rev[(’ˆ[(’ˆ[’a,’b]),(’ˆ[’c,’d])]),T]} =>* {true} .

Solution 1
state: {true}
accumulated substitution:
T --> ’ˆ[(’ˆ[’d,’c]),(’ˆ[’b,’a])]

Maude> vu-narrow [2] in TREE-REVERSE&PALINDROME :
{’rev[(’ˆ[(’ˆ[’a,’b]),T’]),T]} =>* {true} .

Solution 1
state: {true}
accumulated substitution:
T’ --> @1:Qid
T --> ’ˆ[@1:Qid,(’ˆ[’b,’a])]
variant unifier:

Solution 2
state: {true}
accumulated substitution:
T’ --> ’ˆ[@2:Qid,@1:Qid]
T --> ’ˆ[(’ˆ[@1:Qid,@2:Qid]),(’ˆ[’b,’a])]

Maude> vu-narrow [1] in TREE-REVERSE&PALINDROME :
{’pal[(’ˆ[(’ˆ[’a,’b]),(’ˆ[’c,’d])])]} =>* {true} .

No solution.

Maude> vu-narrow [1] in TREE-REVERSE&PALINDROME :
{’pal[(’ˆ[(’ˆ[’a,’b]),(’ˆ[’b,’a])])]} =>* {true} .

Solution 1
state: {true}

7 Further Reading

These tapas have been a way of introducing you, dear reader, in an informal, high-bandwith way to some
symbolic aspects of Maude that you might find useful. As agreed, I have tried to kept technical details
to a bare minimum: just sufficient for an intelligent conversation with someone having a CS background

to be meaningful. Now is the time to explain to you how a few gaps we had to skirt can be filled in. I
focus on Maude in Section 7.1, and discuss broader mathematical background readings in Section 7.2.

7.1 Further Reading on Maude

The most up-to-date Maude journal paper —also emphasizing symbolic aspects— and covering other
aspects such as Maude’s strategy language and Maude’s approach to concurrent object-oriented
programming and various Maude external objects —that allow Maude programs to be executed in a
distributed manner and interact with external entities— is [20]. The Maude book [14] is dated —since
important new features were added later— but is still useful for those parts it covers and its tutorial
examples. For teaching formal methods using Maude, Peter Ölvecky’s book [61] is an excellent textbook
emphasizing distributed system applications. In particular, [20], [14] and [61] provide more precise
definitions of rewriting modulo B and a wealth of examples of both functional and system modules,
including parameterized ones such as the S-EXP{A :: TRIV} one we already encountered, and the use
of the reduce and rewrite commands. For executability conditions and how to check them, for both
functional and system modules, see [24, 22, 32]. References [14] and [61] also provide good explanations
and examples to understand the use of Maude’s breadth first search command, and how search
supports a basic, yet very useful, form of model checking verification. They also explain and illustrate
well the more sophisticated LTL temporal logic model checking also supported directly by Maude.

Something important that did no come up in our conversation over tapas is reflection. It did come
up subliminally in theory transformations like pΣ,EYBq ÞÑpΣ“?,E“?YBq, or in transforming a Horn
theory into a Maude system module. The point about reflection is that any such transformations can
be performed inside Maude, because Maude’s META-LEVEL module supports meta-programming, i.e.,
writing programs that manipulate other programs. This is not some kind of useful hack, but a piece of
mathematics: the efficient exploitation inside Maude of the fact that both rewriting logic and its underlying
equational logic are reflective [16], i.e., have universal theories that can faithfully represent any theories
[including themselves] as data, as well as faithfully simulating deduction in them. The reason why this
may be of interest to you is because —combined with the symbolic features I have explained— reflection
makes it very easy to build many formal tools, not just for Maude itself, but for many other logics. Of
course, in the Maude team we aggressively practice dogfooding, so all the Maude formal verification tools
have been built this way; but other researchers use Maude in the same way for many other logics and
languages. The Maude book [14], and [20], are good sources to learn more about reflection in Maude.

To learn more about how to use unification, variants, and narrowing-based reachability analysis
in Maude, the best sources at present are the journal paper [20], the conference paper [21], and the Maude
3.1 Manual [15]. I discuss theoretical foundations for these and other topics in Section 7.2.

There are many other aspects of Maude and rewriting logic, and many other applications that I could
not discuss here. A somewhat dated but still useful survey of rewriting logic, including also references
to many applications developed in Maude, is the 2012 paper [54].

7.2 Further Background Reading

I focus here on answering the question: Where can I learn more about the mathematical foundations of the
topics we have discussed over tapas? This is different from questions about Maude itself, which, hopefully,
were answered in Section 7.1.

Logics. The three main logics involved are: (i) equational logic; (ii) its extension to first-order logic;
and (iii) rewriting logic. Both (ii) and (iii) are parametric on the equational logic chosen. Since Maude
functional modules specify algebraic data types, the million-dollar question is: What is a good logic to
specify algebraic data types? This question is highly non-trivial, due to the presence of partial functions in
many data types. Joseph Goguen and I proposed order-sorted equational logic in [29], further developed in
[53]. I later proposed the extension of order-sorted equational logic to membership equational logic in [53],
and developed its computational logic aspects and its rewriting techniques jointly with Adel Bouhoula

and Jean-Pierre Jouannaud in [9]. Maude’s functional modules are based on membership equational logic;
but many examples can be specified as order-sorted theories. Any equational logic is just a fragment
of a corresponding first-order logic. For order-sorted logic this is explained in detail in, e.g., [69]. For
simplicity of exposition, rewriting logic was first presented in [52] as having unsorted equational logic as
its sublogic. But from the beginning the intention was to base it on order-sorted equational logic; and it was
further extended, based on membership equational logic, in [10]. A latest extension allowing quantifier-free
formulas in the conditions of conditional rules is presented in [57].

Rewriting Modulo B, and Rewriting in Rewrite Theories. I have not touched upon conditional rewrit-
ing, which generalizes the unconditional case and is supported by Maude. For the semantics of conditional
rewriting modulo B in convergent order-sorted equational theories, a quite comprehensive reference is [41].
I have cheated a little by saying that convergent means Church-Rosser and terminating: in the modulo B
case the additional requirement of B-coherence [37, 55] is needed; but this is automatically enforced by the
Maude implementation. Furthermore, in the order-sorted case sort-decreasingness (see, e.g., [41]), i.e., that
the sorts of terms remain the same or go down by rewriting, is also needed for convergence. The key theorem
for equational rewriting is that if pΣ,EYBq is convergent, then we have the Church-Rosser Equivalence:

u“EYB v ô u!E,B“B v!E,B

A very general formulation of this equivalence for the conditional order-sorted case can be found in [41]. As
already mentioned, rewriting in conditional theories in membership equational logics has been studied in [9].

For a rewrite theory, R“pΣ,EYB,Rq, rewriting with transition rules R should happen modulo EYB.
But this is of course very hard to implement, since EYB-equality may even be undecidable. Furthermore,
both the equations E and the rules R can be conditional. However, under the natural assumption that
pΣ,EYBq is convergent, a simple requirement called coherence of R with E modulo B [73, 24] ensures
that the unmanageable relationÑR{pEYBq can be faithfully simulated by the much simpler relationsÑR,B

andÑE,B. This is what the Maude implementation supports, requiring system modules to be coherent.

Unification, Narrowing, Variants, and Variant Unification. Unification is technical jargon for solving
equations in an algebra. For algebras whose elements are numbers, this goes back to Classical Greece,
where many of these problems arose in conjunction with geometrical constructions, e.g., measuring the
diagonal of a unit square. It was advanced by the Arabs, who coined the word “Algebra” for this business,
and further developed by the Italians, Newton, Galois, Gauss, the Emmy Noether school, and so on. Two
fundamental problems about solving equations in numerical domains were settled in the 20th Century: (i)
the effective solvability of polynomial equations and inequalities in any real-closed field, and in particular
in the reals, thanks to the Tarski-Seidenberg Theorem [72, 67] —which actually decides the satisfiability
of any first-order formula in this language—, and (ii) the inexistence of a general algorithm to solve
polynomial equations in the integers —the so-called diophantine equations, after Diophantus—, thanks to
Matiyasevich’s negative answer to Hilbert’s 10th Problem [44]. But with the rise of symbolic logic in the
20th Century, the need naturally arose to solve equations in term algebras, i.e., in TΣ or TΣpXq for variables
X: it amounts to the same if Σ has constants. This problem was solved by Jacques Herbrand in his thesis
(see [33], pg. 148). In Computer Science, Herbrand’s algorithm was rediscovered independently by Alan
Robinson, who called it “unification,” as the main workhorse for resolution: his breakthrough in automated
theorem proving [65]. Since resolution was based on first-order logic without equality, the issue of how
to “build in” equational theories in resolution provers so as to avoid falling into the Turing tarpits was
recognized as a pressing one by Gordon Plotkin [64], who proceeded to give an A-unification algorithm
for this purpose in [64]. Independently, Makanin in Russia provided a different A-unification algorithm
in [42]. Likewise, Peterson and Stickel gave an AC-unification algorithm in [63]. This raised the general
E-unification problem, that is, how to solve equations in the data type TΣ{E, or equivalently in TΣ{EpXq,
for various E: see [36, 6, 5] for three surveys. The treatment of E-unification was unsorted. But this is too
restrictive for the reasons already mentioned above. Therefore, the need for more general order-sorted E-
unification algorithms arose naturally and was answered in [66, 59, 71]. Additional advances were made in
[31] and —crucially for the efficiency of Maude’s implementation of order-sorted B-unification— in [25].

Narrowing also emerged from efforts to make resolution theorem provers reason efficiently about equality.
Specifically, it was introduced by Slagle [70] as an efficient kind of paramodulation, and was further
elaborated by Lankford as a component of a resolution-with-equality strategy assuming convergent
equations [39]. Hullot further advanced the narrowing ideas, proposed his basic narrowing strategy, and
explored under some restrictions the notion of narrowing modulo axioms B for a convergent theory
pΣ,EYBq in [34]. A more systematic generalization to this case was carried out by J.-P. Jouannaud, C.
Kirchner and H. Kirchner in [35], assuming a B-unification algorithm. The generalization to narrowing
with convergent order-sorted conditional equational theories modulo B has been carried out in [11].

Both Fay [28] and Hullot [34] realized that narrowing could be used to compute E-unifiers of the
convergent equations E used as rules in the narrowing. Furthermore, Hullot discussed in [34] how EYB-
unification algorithms could be obtained via narrowing modulo B for pΣ,EYBq convergent in some
cases. Again, a more systematic extension of narrowing-based EYB-unification was carried out by J.-P.
Jouannaud, C. Kirchner and H. Kirchner in [35], and was later extended to EYB-unification for convergent
order-sorted conditional equational theories in [11]. However, narrowing-based EYB-unification suffers
from two main drawbacks: (i) since the conditions for termination of narrowing are very restrictive, what
narrowing-based EYB-unification generally provides is only a semi-algorithm: if a EYB-unifier exists,
it will be found in a finite number of steps —up to pragmatic time and space limitations; but if it does
not exist, we may never find out, making EYB-unifiability undecidable in general by this method; and
(ii) since some axioms B can give rise to huge numbers of B-unifiers, these algorithms can suffer serious
combinatorial explosions. Here is where variants, discussed next, can make a big difference.
Comon and Delaune proposed the notion of variant and studied its properties in [18]. Folding variant
narrowing and variant unification were defined and developed in [27]. Several alternative notions of variant,
their relationships, and ways of checking FVP are discussed in [12]. The extension of the properties and
methods of variants modulo axioms B when B-unification can have an infinite set of B-unifiers has been
initiated in [49]. As already explained in Section 4, EYB-unification with the folding variant narrowing
strategy has two key advantages: (i) it terminates with a complete finite set of EYB-unifiers iff pΣ,RYBq
is FVP, and (ii) its search space and its efficiency are much better than standard narrowing-based EYB-
unification. There are many applications of variants and variant unification to, e.g., cryptographic protocol
analysis, e.g., [18, 13, 26, 46], program termination [23], SMT solving, e.g., [56, 68], partial evaluation, e.g.,
[3], program transformation and symbolic model checking, e.g., [57, 7], and theorem proving, e.g., [69, 50].

Variant Satisfiability. The foundations and many examples can be found in [56]. Decidable QF sat-
isfiability in TΣ{B whenever any A symbol f P Σ is also C, generalizes that of TΣ{AC in [17]. Variant
satisfiability algorithms are studied in [68]. An extension to specifications with predicates, plus variant
satisfiability of data types with constructors and selectors can be found in [30]. For variant satisfiability
examples with B“A see [48]. For theorem proving applications see [69, 50].

Narrowing-Based Reachability Analysis. Narrowing was developed as an automated deduction method
for equational reasoning. The idea that narrowing based EYB-unification could be used to perform
symbolic reachability analysis in a rewrite theory R“pΣ,EYB,Rq by narrowing symbolic states with tran-
sition rules R modulo EYB was proposed in [51], with cryptographic protocol analysis as an application in
mind. In fact, the most impressive application of this technique is the Maude-NPA tool for analysis of cryp-
tographic protocols (see [26] for a tutorial, and more recent references in DBLP). The extension of this tech-
nique from reachability analysis to symbolic LTL model checking —with a Maude-based tool supporting
it— can be found in [7]. Symbolic reachability analysis with very general conditional rules is studied in [57].

Acknowledgements. I thank the BOPL organizers for giving me the opportunity of presenting these
ideas as a BOPL joint invited speaker. I chose the talk’s topic having in mind the interests of the various
BOPL participants and, in spite of the pandemic, found the online discussions very helpful and stimulating.
The ideas I have presented are based on joint work with various colleagues. The symbolic aspects of
Maude are part of a long and extremely active effort by the members of the Maude Team; they owe much
to Steven Eker’s high-performance implementation of its features. Folding variant narrowing is joint

work with Santiago Escobar and Ralf Sasse. Variant-based satisfiability has been advanced in
joint work with Stephen Skeirik and Raúl Gutiérrez. The Maude-NPA has been developed in
joint work with Catherine Meadows, Santiago Escobar, and Ph.D. students at Illinois, Valencia,
and Oslo. Maude’s Symbolic LTL Model Checker is joint work with Kyungmin Bae and
Santiago Escobar. Last but not least, the work on generalization, homeomorphic embedding
and variant-based partial evaluation of Maude programs is joint research with Maŕıa Alpuente,
Angel Cuenca-Ortega, Santiago Escobar and Julia Sapiña at TU Valencia, and Demis Ballis at
the University of Udine. Given the long list, I hope I have not missed anybody, and apologize in
advance if that were inadvertently the case. I warmly thank Maŕıa Alpuente, Francisco Durán,
Santiago Escobar, Maribel Fernádez, Salvador Lucas, Narciso Mart́ı-Oliet, Rubén Rubio and
Carolyn Talcott for their very helpful suggestions to improve the manuscript. The research
reported herein has been partially supported by NRL under contract N00173-17-1-G002.

References

1. Alpuente, M., Cuenca-Ortega, A., Escobar, S., Meseguer, J.: Order-sorted homeomorphic embedding
modulo combinations of associativity and/or commutativity axioms. Fundamenta Informaticae 177,
297–329 (2020)

2. Alpuente, M., Ballis, D., Cuenca-Ortega, A., Escobar, S., Meseguer, J.: Acuos2: A high-performance
system for modular ACU generalization with subtyping and inheritance. In: Proc. Logics in Artificial In-
telligence, JELIA 2019. Lecture Notes in Computer Science, vol. 11468, pp. 171–181. Springer (2019)

3. Alpuente, M., Cuenca-Ortega, A., Escobar, S., Meseguer, J.: A partial evaluation framework for
order-sorted equational programs modulo axioms. J. Log. Algebraic Methods Program. 110 (2020)

4. Alpuente, M., Escobar, S., Espert, J., Meseguer, J.: A modular order-sorted equational generalization
algorithm. Inf. Comput. 235, 98–136 (2014)

5. Baader, F., Snyder, W.: Unification theory. In: Handbook of Automated Reasoning. Elsevier (1999)
6. Baader, F., Siekmann, J.H.: Unification theory. In: Handbook of Logic in Artificial Intelligence and

Logic Programming, Volume 2, pp. 41–126. Oxford University Press (1994)
7. Bae, K., Escobar, S., Meseguer, J.: Abstract Logical Model Checking of Infinite-State Systems Using

Narrowing. In: Rewriting Techniques and Applications (RTA’13). LIPIcs, vol. 21, pp. 81–96. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik (2013)

8. Bouchard, C., Gero, K.A., Lynch, C., Narendran, P.: On forward closure and the finite variant property.
In: Proc. FroCoS 2013. LNCS, vol. 8152, pp. 327–342. Springer (2013)

9. Bouhoula, A., Jouannaud, J.P., Meseguer, J.: Specification and proof in membership equational logic.
Theoretical Computer Science 236, 35–132 (2000)

10. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories. Theor. Comput. Sci.
360(1-3), 386–414 (2006)

11. Cholewa, A., Escobar, S., Meseguer, J.: Constrained narrowing for conditional equational theories
modulo axioms. Science of Computer Programming 112, 24–57 (2015)

12. Cholewa, A., Meseguer, J., Escobar, S.: Variants of variants and the finite variant property.
Tech. rep., CS Dept. University of Illinois at Urbana-Champaign (February 2014), available at
http://hdl.handle.net/2142/47117

13. Ciobaca., S.: Verification of Composition of Security Protocols with Applications to Electronic Voting.
Ph.D. thesis, ENS Cachan (2011)

14. Clavel, M., Durán, F., Eker, S., Meseguer, J., Lincoln, P., Mart́ı-Oliet, N., Talcott, C.: All About
Maude – A High-Performance Logical Framework. Springer LNCS Vol. 4350 (2007)

15. Clavel, M., Durán, F., Eker, S., Escobar, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Rubio, R.,
Talcott, C.: Maude Manual (Version 3.1), october 2020, http://maude.cs.uiuc.edu

16. Clavel, M., Meseguer, J., Palomino, M.: Reflection in membership equational logic, many-sorted
equational logic, Horn logic with equality, and rewriting logic. Theoretical Computer Science 373,
70–91 (2007)

17. Comon, H.: Unification et disunification: Théorie et applications. Ph.D. thesis, Institute National
Polytechnique de Grenoble, France (1988)

18. Comon-Lundth, H., Delaune, S.: The finite variant property: how to get rid of some algebraic
properties, in Proc RTA’05, Springer LNCS 3467, 294–307, 2005

19. CVC4: Availabla at https://cvc4.github.io
20. Durán, F., Eker, S., Escobar, S., Mart́ı-Oliet, N., Meseguer, J., Rubio, R., Talcott, C.L.: Pro-

gramming and symbolic computation in Maude. J. Log. Algebr. Meth. Program. 110 (2020).
https://doi.org/10.1016/j.jlamp.2019.100497, https://doi.org/10.1016/j.jlamp.2019.100497

21. Durán, F., Eker, S., Escobar, S., Mart́ı-Oliet, N., Meseguer, J., Talcott, C.L.: Associative unification and
symbolic reasoning modulo associativity in maude. In: Rewriting Logic and Its Applications - 12th
International Workshop, WRLA 2018, Held as a Satellite Event of ETAPS, Thessaloniki, Greece, June
14-15, 2018, Proceedings. Lecture Notes in Computer Science, vol. 11152, pp. 98–114. Springer (2018)

22. Durán, F., Lucas, S., Meseguer, J.: MTT: The Maude Termination Tool (system description). In:
IJCAR 2008. Lecture Notes in Computer Science, vol. 5195, pp. 313–319. Springer (2008)

23. Durán, F., Lucas, S., Meseguer, J.: Termination modulo combinations of equational theories. In:
Frontiers of Combining Systems, 7th International Symposium, FroCoS 2009, Trento, Italy, September
16-18, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5749, pp. 246–262. Springer (2009)

24. Durán, F., Meseguer, J.: On the Church-Rosser and coherence properties of conditional order-sorted
rewrite theories. J. Algebraic and Logic Programming 81, 816–850 (2012)

25. Eker, S.: Fast sort computations for order-sorted matching and unification. In: Formal Modeling:
Actors, Open Systems, Biological Systems - Essays Dedicated to Carolyn Talcott on the Occasion
of Her 70th Birthday. vol. 7000, pp. 299–314. Springer LNCS (2011)

26. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol analysis modulo
equational properties. In: Foundations of Security Analysis and Design V, FOSAD 2007/2008/2009
Tutorial Lectures, LNCS, vol. 5705, pp. 1–50. Springer (2009)

27. Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant termination. J.
Algebraic and Logic Programming 81, 898–928 (2012)

28. Fay, M.: First-order unification in an equational theory. In: Proc. Fourth Workshop on Automated
Deduction, Austin, Texas, pp. 161–167 (1979)

29. Goguen, J., Meseguer, J.: Order-sorted algebra I: Equational deduction for multiple inheritance,
overloading, exceptions and partial operations. Theoretical Computer Science 105, 217–273 (1992)

30. Gutiérrez, R., Meseguer, J.: Variant-based decidable satisfiability in initial algebras with predicates.
In: Proc. Logic-Based Program Synthesis and Transformation – LOPSTR 2017. Lecture Notes in
Computer Science, vol. 10855, pp. 306–322. Springer (2017)

31. Hendrix, J., Meseguer, J.: Order-sorted equational unification revisited. Electr. Notes Theor. Comput.
Sci. 290, 37–50 (2012)

32. Hendrix, J., Meseguer, J., Ohsaki, H.: A sufficient completeness checker for linear order-sorted
specifications modulo axioms. In: Automated Reasoning, Third International Joint Conference,
IJCAR 2006. pp. 151–155 (2006)

33. Herbrand, J.: Logical Writings. Reidel (1971)
34. Hullot, J.M.: Canonical forms and unification. In: Proc. Fifth Conference on Automated Deduction,

LNCS, vol. 87, pp. 318–334. Springer (1980)
35. Jouannaud, J.P., Kirchner, C., Kirchner, H.: Incremental construction of unification algorithms in

equational theories. In: Proc. ICALP’83. pp. 361–373. Springer LNCS 154 (1983)
36. Jouannaud, J.P., Kirchner, C.: Solving equations in abstract algebras: A rule-based survey of unification.

In: Computational Logic - Essays in Honor of Alan Robinson. pp. 257–321. MIT Press (1991)
37. Jouannaud, J.P., Kirchner, H.: Completion of a set of rules modulo a set of equations. SIAM Journal

of Computing 15, 1155–1194 (November 1986)
38. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394 (1976)
39. Lankford, D.S.: Canonical inference. Tech. Rep. ATP-32, Southwestn Univ. (1975)
40. Levi, G., Sirovich, F.: Proving program properties, symbolic evaluation and logical procedural

semantics. In: Proc. Mathematical Foundations of Computer Science 1975, 4th Symposium. Lecture
Notes in Computer Science, vol. 32, pp. 294–301. Springer (1975)

41. Lucas, S., Meseguer, J.: Normal forms and normal theories in conditional rewriting. J. Log. Algebr.
Meth. Program. 85(1), 67–97 (2016)

42. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Math USSR Sbornik
32(2), 129–198 (1977)

43. Mart́ı-Oliet, N., Meseguer, J.: Rewriting logic as a logical and semantic framework. In: Gabbay,
D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd. Edition, pp. 1–87. Kluwer Academic
Publishers (2002), first published as SRI Tech. Report SRI-CSL-93-05, August 1993

44. Matiyasevich, Y.V.: Hilbert’s 10th Problem. MIT Press (1993)
45. McCarthy, J., Abrahams, P., Edwards, D., Hart, T., Levin, M.: LISP 1.5 Programmer’s Manual. MIT

Press (1985)
46. Meier, S., Schmidt, B., Cremers, C., Basin, D.A.: The TAMARIN prover for the symbolic analysis of

security protocols. In: Proc. CAV 2013. Lecture Notes in Computer Science, vol. 8044, pp. 696–701.
Springer (2013)

47. Meseguer, J.: Order-sorted parameterization and induction. In: Semantics and Algebraic Specification.
Lecture Notes in Computer Science, vol. 5700, pp. 43–80. Springer (2009)

48. Meseguer, J.: Variant satisfiability of parameterized strings. In: Proc. WRLA 2020. LNCS, vol. 12328,
pp. 96–113. Springer (2020)

49. Meseguer, J.: Variants in the infinitary unification wonderland. In: Proc. WRLA 2020. LNCS, vol.
12328, pp. 75–95. Springer (2020)

50. Meseguer, J., Skeirik, S.: Inductive reasoning with equality predicates, contextual rewriting and
variant-based simplification. In: Proc. WRLA 2020. LNCS, vol. 12328, pp. 114–135. Springer (2020)

51. Meseguer, J., Thati, P.: Symbolic reachability analysis using narrowing and its application to the
verification of cryptographic protocols. J. Higher-Order and Symbolic Computation 20(1–2), 123–160
(2007)

52. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoretical Computer
Science 96(1), 73–155 (1992)

53. Meseguer, J.: Membership algebra as a logical framework for equational specification. In: Proc.
WADT’97. pp. 18–61. Springer LNCS 1376 (1998)

54. Meseguer, J.: Twenty years of rewriting logic. J. Algebraic and Logic Programming 81, 721–781 (2012)
55. Meseguer, J.: Strict coherence of conditional rewriting modulo axioms. Theor. Comput. Sci. 672,

1–35 (2017)
56. Meseguer, J.: Variant-based satisfiability in initial algebras. Sci. Comput. Program. 154, 3–41 (2018)
57. Meseguer, J.: Generalized rewrite theories, coherence completion and symbolic methods. Journal

of Logic and Algebraic Methods in Programming (2019), in this issue
58. Meseguer, J., Goguen, J.: Order-sorted algebra solves the constructor-selector, multiple representation

and coercion problems. Information and Computation 103(1), 114–158 (1993)
59. Meseguer, J., Goguen, J., Smolka, G.: Order-sorted unification. J. Symbolic Computation 8, 383–413

(1989)
60. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans. Program.

Lang. Syst. 1(2), 245–257 (1979)
61. Ölveczky, P.C.: Designing Reliable Distributed Systems - A Formal Methods Approach Based on

Executable Modeling in Maude. Undergraduate Topics in Computer Science, Springer (2017)
62. Oppen, D.C.: Complexity, convexity and combinations of theories. Theor. Comput. Sci. 12, 291–302

(1980)
63. Peterson, G.E., Stickel, M.E.: Complete sets of reductions for some equational theories. Journal

of the Association Computing Machinery 28(2), 233–264 (1981)
64. Plotkin, G.: Building-in equational theories. Machine Intelligence 7, 73–90 (November 1972)
65. Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal of the Association

for Computing Machinery 12, 23–41 (1965)
66. Schmidt-Schauß, M.: Computational Aspects of an Order-Sorted Logic with Term Declarations,

Lecture Notes in Computer Science, vol. 395. Springer (1989)
67. Seidenberg, A.: A new decision method for elementary algebra. Annals of Mathematics 60, 365–374

(1954)

68. Skeirik, S., Meseguer, J.: Metalevel algorithms for variant satisfiability. J. Log. Algebr. Meth. Program.
96, 81–110 (2018)

69. Skeirik, S., Stefanescu, A., Meseguer, J.: A constructor-based reachability logic for rewrite theories.
Fundam. Inform. 173(4), 315–382 (2020)

70. Slagle, J.R.: Automated theorem-proving for theories with simplifiers commutativity, and associativity.
J. ACM 21(4), 622–642 (1974)

71. Smolka, G., Nutt, W., Goguen, J., Meseguer, J.: Order-sorted equational computation. In: Nivat, M.,
Aı̈t-Kaci, H. (eds.) Resolution of Equations in Algebraic Structures, vol. 2, pp. 297–367. Academic
Press (1989)

72. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University of California
Press (1951), prepared with the assistance of J.C.C. McKinsey.

73. Viry, P.: Equational rules for rewriting logic. Theoretical Computer Science 285, 487–517 (2002)
74. Yices: Availabla at https://yices.csl.sri.com

